58 Clinical Trials for Various Conditions
The purpose of this research study is to determine the safety and efficacy of administering two doses of lerapolturev in residual disease (within tumor margins) after surgery, followed later by repeated injections of lerapolturev in the subcutaneous area (under the skin) around the lymph nodes of the head and neck for adult patients diagnosed with recurrent glioblastoma at the Preston Robert Tisch Brain Tumor Center (PRTBTC) at Duke.
This phase I trial is to find out the best dose, possible benefits and/or side effects of engineered natural killer (NK) cells containing deleted TGF-betaR2 and NR3C1 (cord blood \[CB\]-NK-TGF-betaR2-/NR3C1-) in treating patients with glioblastoma that has come back (recurrent). CB-NK-TGF-betaR2-/NR3C1- cells are genetically changed immune cells that may help to control the disease.
This phase I trial studies the effects of ONC201 in combination with standard of care radiation therapy in treating patients with glioblastoma that has come back (recurrent). ONC201 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy photons to kill tumors cells and shrink tumors. Giving ONC201 in combination with radiation therapy may help treat patients with recurrent glioblastoma.
This Phase 2 single arm trial in patients with rGBM will characterize the efficacy, safety, tolerability and initial efficacy of lerapolturev intratumoral infusion followed by intravenous pembrolizumab 14 to 28 days later, and every 3 weeks, thereafter.
This phase II trial studies how well fludeoxyglucose F-18 (18F-FDG) positron emission tomography (PET) and osimertinib works in evaluating glucose utilization in patients with EGFR activated glioblastoma. Osimertinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. 18F-FDG PET imaging may help to detect changes in tumor glucose utilization, which may allow investigators to obtain an early read out on the impact of osimertinib on recurrent glioblastoma patients whose tumors have EGFR activation.
This study is a clinical trial to determine the safety of injecting G207 (a new experimental virus therapy) into a recurrent or progressive brain tumor. The safety of combining G207 with a single low dose of radiation, designed to enhance virus replication and tumor cell killing, will also be tested.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase I/II trial to study the effectiveness of carmustine followed by surgery in treating patients who have recurrent supratentorial malignant glioma or metastatic brain neoplasm.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of carmustine wafers plus irinotecan in treating patients with recurrent supratentorial high grade gliomas.
IL13-PE38QQR is an oncology drug product consisting of IL13 (interleukin-13) and PE38QQR (a bacteria toxin). IL3-PE38QQR is a protein that exhibits cell killing activity against a variety of IL13 receptor-positive tumor cell lines indicating that it may show a therapeutic benefit. In reciprocal competition experiments, the interaction between IL13-PE38QQR and the IL13 receptors was shown to be highly specific for human glioma cells. Patients will receive IL13-PE38QQR via a catheter placed directly into the brain tumor. Tumor recurrence will be confirmed by biopsy. The next day, patients will start a continuous 48-hour infusion of IL13-PE38QQR into the tumor. The dose (concentration) will be increased in the pre-resection infusion until the endpoint is reached (histologic evidence of tumor cytotoxicity or a maximum tolerated dose). Tumor resection will be planned for one week after biopsy, plus or minus 1 day. A histologically-effective concentration (HEC) will be determined using pathologic observations. At the end of resection, three catheters will be placed in brain tissue next to the resection site and assessed within 24 hours using MRI. On the second day after surgery, IL13-PE38QQR infusion will begin and will continue for 4 days. The lowest pre-resection IL13-PE38QQR concentration will be used as the starting dose for post-resection infusions. After an HEC or maximum tolerated dose (MTD) is determined, the pre-resection infusion will no longer be administered. Subsequent patients will have tumor resection and placement of three peri-tumoral catheters at study entry. IL13-PE38QQR will be infused starting on the second day after surgery and continuing for 4 days. Escalation of the post-resection IL13-PE38QQR concentration will be continued until the previously-defined HEC or MTD is reached, after which duration of the post-resection infusion will be increased in one day increments for up to 6 days. If a post-resection MTD is obtained, there will be no increase in duration of infusion. In the final stage of the study, catheters will be placed 2 days after tumor resection, and a 4-day IL13-PE38QQR infusion will begin the day after catheter placement. Patients will be observed clinically and radiographically for toxicity and duration of tumor control.
RATIONALE: Photodynamic therapy uses light and drugs that make cancer cells more sensitive to light to kill tumor cells. It is not yet known if the addition of photodynamic therapy to combined therapy with surgery, radiation therapy, and chemotherapy is more effective than combined therapy alone for supratentorial gliomas. PURPOSE: Randomized phase III trial to study the effectiveness of surgery, radiation therapy, and chemotherapy with or without photodynamic therapy in treating patients who have newly diagnosed or recurrent malignant supratentorial gliomas.
This phase II trial is studying how well tipifarnib works in treating young patients with recurrent or progressive high-grade glioma, medulloblastoma, primitive neuroectodermal tumor, or brain stem glioma. Tipifarnib may stop the growth of tumor cells by blocking the enzymes necessary for their growth.
This phase I trial studies the side effects and best dose of palbociclib isethionate in treating younger patients with central nervous system tumors that have grown, come back, or not responded to treatment. Palbociclib isethionate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This pilot clinical trial studies gallium Ga 68-edotreotide (68Ga-DOTATOC) positron emission tomography (PET)/computed tomography (CT) in finding brain tumors in younger patients. Diagnostic procedures, such as gallium Ga 68-edotreotide PET/CT imaging, may help find and diagnose brain tumors.
IL13-PE38QQR is an oncology drug product consisting of IL13 (interleukin-13) and PE38QQR (a bacteria toxin). IL13-PE38QQR is a protein that exhibits cell killing activity against a variety of IL13 receptor-positive tumor cell lines indicating that it may show a therapeutic benefit. In reciprocal competition experiments, the interaction between IL13-PE38QQR and the IL13 receptors was shown to be highly specific for human glioma cells. Prior to treatment, patients will have physical and neurologic exams, MRI to measure the extent of tumor, tumor biopsy, and screening laboratory tests. On Day 1, one or two catheters will be inserted directly into the tumor, after which a CT scan will be used to confirm placement. Each patient will receive one IL13-PE38QQR infusion, and the tumor will be surgically removed on approximately Day 15. In the first group of patients, IL13-PE38QQR will be infused directly into the tumor for 4 days. Depending on effectiveness or side effects of the study drug, the duration will be increased stepwise to a maximum of 7 days in subsequent groups of patients. Once duration of infusion has been determined, the dose of IL13-PE38QQR will be increased stepwise (in separate groups of patients), depending on effectiveness or side effects of the study drug. The activity of the drug against the tumor cells will be judged by examining the removed tumor tissue. Patients will have neurologic exams and MRI scans immediately after the resection and every eight weeks until disease progression is observed.
This phase I trial is studying the side effects and best dose of vorinostat when given together with temozolomide in treating young patients with relapsed or refractory primary brain tumors or spinal cord tumors. Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may help temozolomide work better by making tumor cells more sensitive to the drug.
This phase I trial is studying the side effects and best dose of ABT-888 when given in combination with temozolomide in treating young patients with recurrent or refractory CNS tumors. ABT-888 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving ABT-888 together with temozolomide may kill more tumor cells.
This phase I trial is studying the side effects and best dose of ispinesib in treating young patients with relapsed or refractory solid tumors or lymphoma. Drugs used in chemotherapy, such as ispinesib, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing
This phase I trial is studying the side effects and best dose of lenalidomide in treating young patients with recurrent, progressive, or refractory CNS tumors. Lenalidomide may stop the growth of CNS tumors by blocking blood flow to the tumor. It may also stimulate the immune system in different ways and stop tumor cells from growing.
This phase I trial is studying the side effects and best dose of cilengitide in treating children with recurrent, progressive, or refractory primary CNS tumors. Cilengitide may slow the growth of brain cancer cells by stopping blood flow to the tumor.
This phase I trial is studying the side effects and best dose of FR901228 in treating children with refractory or recurrent solid tumors or leukemia. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die
Phase I trial to study the safety of combining O6-benzylguanine with temozolomide in treating children who have recurrent or refractory brain tumors. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. O6-benzylguanine may increase the effectiveness of temozolomide by making tumor cells more sensitive to the drug.
RATIONALE: Radiolabeled monoclonal antibodies, such as iodine I 131 monoclonal antibody 3F8, can find tumor cells and carry tumor-killing substances to them without harming normal cells. This may be an effective treatment for central nervous system cancer or leptomeningeal metastases. PURPOSE: This phase II trial is studying the side effects and how well iodine I 131 monoclonal antibody 3F8 works in treating patients with central nervous system cancer or leptomeningeal cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Peripheral stem cell transplantation or bone marrow transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of combining temozolomide, thiotepa, and carboplatin followed by peripheral stem cell transplantation or bone marrow transplantation in treating patients who have brain cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining chemotherapy with bone marrow or peripheral stem cell transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells. Vaccines made from a person's white blood cells and tumor cells may make the body build an immune response to kill tumor cells. Interleukin-2 may stimulate a person's white blood cells to kill tumor cells. PURPOSE: Phase II trial to study the effectiveness of combination chemotherapy and vaccine therapy followed by bone marrow or peripheral stem cell transplantation and interleukin-2 in treating patients who have recurrent or refractory brain cancer.
RATIONALE: Drugs used in chemotherapy work in different ways to stop tumor cells from dividing so they stop growing or die. Giving chemotherapy with peripheral stem cell or bone marrow transplant may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells. PURPOSE: This phase II trial is studying how well thiotepa followed by peripheral stem cell or bone marrow transplant works in treating patients with malignant glioma.
RATIONALE: Monoclonal antibodies can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. PURPOSE: Phase I trial to study the effectiveness of monoclonal antibody therapy in treating patients who have leptomeningeal metastases.
RATIONALE: Radiolabeled monoclonal antibodies can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. PURPOSE: Phase I/II trial to study the effectiveness of radiolabeled monoclonal antibody therapy in treating patients who have primary or metastatic brain cancer.
RATIONALE: Photodynamic therapy uses light and photosensitizing drugs to kill tumor cells and may be an effective treatment for refractory brain tumors. PURPOSE: This phase I trial is studying the side effects and best dose of photodynamic therapy using porfimer sodium in treating patients with refractory brain tumors, including astrocytoma, ependymoma, and medulloblastoma.
RATIONALE: Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs in chemotherapy, such as ifosfamide, carboplatin, and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving dasatinib together with ifosfamide, carboplatin, and etoposide may kill more tumor cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of dasatinib when given together with ifosfamide, carboplatin, and etoposide and to see how well they work in treating young patients with metastatic or recurrent malignant solid tumors.
RATIONALE: A peripheral blood stem cell transplant or bone marrow transplant using stem cells from the patient may be able to replace immune cells that were destroyed by chemotherapy and image-guided intensity-modulated radiation therapy used to kill tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of bone marrow radiation therapy followed by an autologous stem cell transplant in treating patients with high-risk or relapsed solid tumors.