11 Clinical Trials for Various Conditions
This clinical trial evaluates the effect of tislelizumab in treating patients with mismatch repair deficient endometrial cancer that has come back (recurrent). Deoxyribonucleic acid (DNA) mismatch repair (MMR) is a system for recognizing and repairing DNA errors and damage. Mismatch repair deficient tumors (dMMR) may have difficulty repairing DNA mutations during replication that may affect tumor's response to therapy. Immunotherapy with monoclonal antibodies, such as tislelizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving tislelizumab may help treat patients with mismatch repair deficient endometrial cancer.
This phase I trial studies the side effects and best dose of vesicular stomatitis virus-human interferon beta-sodium iodide symporter (VSV-hIFNbeta-NIS) with or without ruxolitinib phosphate in treating patients with stage IV endometrial cancer or endometrial cancer that has come back. The study virus, VSV-hIFNbeta-NIS, has been changed so that it has restricted ability to spread to tumor cells and not to healthy cells. It also contains a gene for a protein, NIS, which helps the body concentrate iodine making it possible to track where the virus goes. VSV-hIFNbeta-NIS may be able to kill tumor cells without damaging normal cells. Ruxolitinib phosphate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving VSV-hIFNbeta-NIS with ruxolitinib phosphate may work better in treating patients with endometrial cancer compared to VSV-hIFNbeta-NIS alone.
This study is to find out how well liquid biopsies work as a non-invasive alternative to other methods of finding cancer cells (such as a tissue biopsy) in patients with endometrial cancer. A liquid biopsy is a blood test that may be able to find cancer cells. Collecting and storing samples of blood and tissue from patients with endometrial cancer to study in the laboratory may help doctors learn how the cells in the blood may change during treatment for uterine cancer.
This phase II trial studies how well cabozantinib s-malate works in treating patients with endometrial cancer that has come back (recurrent) or has spread to other places in the body (metastatic). Cabozantinib s-malate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.
This phase II trial studies how well sunitinib malate works in treating patients with endometrial cancer that has come back after a period of improvement (recurrent) or has spread to other places in the body (metastatic). Sunitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.
This phase II trial is studying how well thalidomide works in treating patients with carcinosarcoma of the uterus that has come back or that does not go to remission (decrease or disappear but may still be in the body) despite treatment. Thalidomide may stop the growth of cancer by stopping blood flow to the tumor.
This phase II trial studies how well pazopanib hydrochloride works in treating patients with uterine cancer that has come back or has not responded to treatment. Pazopanib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Pazopanib hydrochloride may also stop the growth of uterine cancer by blocking blood flow to the tumor.
This phase II trial is studying the side effects and how well ixabepilone works in treating patients with persistent or recurrent uterine cancer. Drugs used in chemotherapy, such as ixabepilone, work in different ways to stop the growth of tumor cells, either by killing the cells of by stopping them from dividing.
This phase II trial is studying how well giving gemcitabine together with docetaxel works in treating patients with recurrent or persistent uterine cancer. Drugs used in chemotherapy, such as gemcitabine and docetaxel, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells.
This phase I trial studies the side effects and best dose of mirvetuximab soravtansine and rucaparib camsylate in treating participants with endometrial, ovarian, fallopian tube or primary peritoneal cancer that has come back. Drugs such as mirvetuximab soravtansine are antibodies linked to a toxic substance and may help find certain tumor cells and kill them without harming normal cells. Rucaparib camsylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving mirvetuximab soravtansine and rucaparib camsylate may work better in treating participants with recurrent endometrial, ovarian, fallopian tube or primary peritoneal cancer.
This phase II trial studies how well temsirolimus and bevacizumab work in treating patients with advanced endometrial, ovarian, liver, carcinoid, or islet cell cancer. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Bevacizumab may also stop the growth of cancer by blocking blood flow to the tumor. Giving temsirolimus together with bevacizumab may kill more tumor cells.