Treatment Trials

256 Clinical Trials for Various Conditions

Focus your search

ACTIVE_NOT_RECRUITING
Ibrutinib and Ixazomib Citrate in Treating Newly Diagnosed, Relapsed or Refractory Waldenstrom Macroglobulinemia
Description

This phase II trial studies the side effects of ibrutinib citrate when given with ixazomib, and determines how well they work in treating patients with Waldenstrom macroglobulinemia that is newly diagnosed, has come back (recurrent) or does not respond to treatment (refractory). Enzyme inhibitors, such as ibrutinib and ixazomib citrate, may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

ACTIVE_NOT_RECRUITING
Pomalidomide in Treating Patients With Relapsed or Refractory Waldenstrom Macroglobulinemia
Description

This phase I trial studies the side effects and best dose of pomalidomide in treating patients with Waldenstrom macroglobulinemia that has returned after a period of improvement (relapsed) or does not respond to treatment (refractory). Pomalidomide may stimulate the immune system in different ways and stop cancer cells from growing.

TERMINATED
Carfilzomib With or Without Rituximab in the Treatment of Waldenstrom Macroglobulinemia or Marginal Zone Lymphoma
Description

This phase II trial studies how well carfilzomib with or without rituximab work in treating patients with Waldenstrom macroglobulinemia or marginal zone lymphoma that is previously untreated, has come back, or does not respond to treatment. Carfilzomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as rituximab, may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Giving carfilzomib alone when disease is responding or with rituximab when disease is not responding may work better in treating patients with Waldenstrom macroglobulinemia or marginal zone lymphoma.

TERMINATED
Comparison of Triple GVHD Prophylaxis Regimens for Nonmyeloablative or Reduced Intensity Conditioning Unrelated Mobilized Blood Cell Transplantation
Description

This randomized phase II trial includes a blood stem cell transplant from an unrelated donor to treat blood cancer. The treatment also includes chemotherapy drugs, but in lower doses than conventional (standard) stem cell transplants. The researchers will compare two different drug combinations used to reduce the risk of a common but serious complication called "graft versus host disease" (GVHD) following the transplant. Two drugs, cyclosporine (CSP) and sirolimus (SIR), will be combined with either mycophenolate mofetil (MMF) or post-transplant cyclophosphamide (PTCy). This part of the transplant procedure is the main research focus of the study.

RECRUITING
Selinexor Plus Combination Chemotherapy in Treating Patients With Advanced B Cell Non-Hodgkin Lymphoma
Description

This phase Ib/II trial is aimed at studying the combination of a drug named Selinexor (selective inhibitor of nuclear export) in combination with standard therapy for B cell Non-Hodgkin's lymphoma called R-CHOP. The investigators will establish maximum tolerated dose of Selinexor in combination with RCHOP and also study the efficacy of this combination for therapy of B cell Non-Hodgkin's lymphoma. Giving Selinexor plus chemotherapy may work better in treating patients with B cell non-Hodgkin lymphoma.

ACTIVE_NOT_RECRUITING
Nivolumab and Lenalidomide in Treating Patients With Relapsed or Refractory Non-Hodgkin or Hodgkin Lymphoma
Description

This I/II trial studies the side effects and best dose of lenalidomide when given together with nivolumab and to see how well they work in treating patients with non-Hodgkin or Hodgkin lymphoma that has come back and does not respond to treatment. Monoclonal antibodies, such as nivolumab, may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as lenalidomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving nivolumab and lenalidomide may work better in treating patients with non-Hodgkin or Hodgkin lymphoma.

COMPLETED
Pembrolizumab and Ibrutinib in Treating Patients With Relapsed or Refractory Non-Hodgkin Lymphoma
Description

This phase I/Ib trial studies the side effects and best dose of ibrutinib when given together with pembrolizumab and to see how well they work in treating patients with non-Hodgkin lymphoma that has come back or does not respond to treatment. Monoclonal antibodies, such as pembrolizumab, may interfere with the ability of cancer cells to grow and spread. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Given pembrolizumab and ibrutinib may work better in treating patients with non-Hodgkin lymphoma.

COMPLETED
Pembrolizumab Alone or With Idelalisib or Ibrutinib in Treating Patients With Relapsed or Refractory Chronic Lymphocytic Leukemia or Other Low-Grade B-Cell Non-Hodgkin Lymphomas
Description

This phase II trial studies how well pembrolizumab alone or with idelalisib or ibrutinib works in treating patients with chronic lymphocytic leukemia or other low-grade B-cell non-Hodgkin lymphomas that have returned after a period of improvement (relapsed) or have not responded to treatment (refractory). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Idelalisib and ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving pembrolizumab alone or with idelalisib or ibrutinib may be an effective treatment in patients with chronic lymphocytic leukemia or other low-grade B-cell non-Hodgkin lymphomas.

COMPLETED
Bortezomib, Rituximab, and Dexamethasone With or Without Temsirolimus in Treating Patients With Untreated or Relapsed Waldenstrom Macroglobulinemia or Relapsed or Refractory Mantle Cell or Follicular Lymphoma
Description

This randomized phase I/II trial studies the side effects and the best dose of temsirolimus when given together with bortezomib, rituximab, and dexamethasone and to see how well they work compared to bortezomib, rituximab, and dexamethasone alone in treating patients with untreated or relapsed Waldenstrom macroglobulinemia or relapsed or refractory mantle cell or follicular lymphoma. Bortezomib and temsirolimus may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Bortezomib may also stop the growth of cancer cells by blocking blood flow to the tumor. Monoclonal antibodies, such as rituximab, can block cancer growth in difference ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Drugs used in chemotherapy, such as dexamethasone, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. It is not yet known whether bortezomib, rituximab, and dexamethasone are more effective with temsirolimus in treating non-Hodgkin lymphoma.

COMPLETED
Lenalidomide and Temsirolimus in Treating Patients With Relapsed or Refractory Hodgkin Lymphoma or Non-Hodgkin Lymphoma
Description

This phase I/II trial studies the side effects and the best dose of lenalidomide when given together with temsirolimus and to see how well it works in treating patients with Hodgkin lymphoma or non-Hodgkin lymphoma that has come back after a period of improvement or is not responding to treatment. Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing. Lenalidomide may also stop the growth of Hodgkin lymphoma or non-Hodgkin lymphoma by blocking blood flow to the cancer. Temsirolimus may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving lenalidomide together with temsirolimus may kill more cancer cells.

COMPLETED
CC-486, Lenalidomide, and Obinutuzumab for the Treatment of Recurrent or Refractory CD20 Positive B-cell Lymphoma
Description

This phase I/Ib trial investigates the side effects of CC-486 and how well it works in combination with lenalidomide and obinutuzumab in treating patients with CD20 positive B-cell lymphoma that has come back (recurrent) or has not responded to treatment (refractory). Chemotherapy drugs, such as CC-486, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Lenalidomide is a drug that alters the immune system and may also interfere with the development of tiny blood vessels that help support tumor growth. Therefore, in theory, it may reduce or prevent the growth of cancer cells. Obinutuzumab is a type of antibody therapy that targets and attaches to the CD20 proteins found on follicular lymphoma cells as well as some healthy blood cells. Once attached to the CD20 protein the obinutuzumab is thought to work in different ways, including by helping the immune system destroy the cancer cells and by destroying the cancer cells directly. Giving CC-486 with lenalidomide and obinutuzumab may improve response rates, quality, and duration, and minimize adverse events in patients with B-cell lymphoma.

ACTIVE_NOT_RECRUITING
Pevonedistat and Ibrutinib in Treating Participants With Relapsed or Refractory CLL or Non-Hodgkin Lymphoma
Description

This phase I trial studies the side effects and best dose of pevonedistat when given together with ibrutinib in participants with chronic lymphocytic leukemia or non-Hodgkin lymphoma that has come back or has stopped responding to other treatments. Pevonedistat and ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

ACTIVE_NOT_RECRUITING
Cellular Immunotherapy Following Chemotherapy in Treating Patients With Recurrent Non-Hodgkin Lymphomas, Chronic Lymphocytic Leukemia, or B-Cell Prolymphocytic Leukemia
Description

This phase I trial studies the side effects and best dose of cellular immunotherapy following chemotherapy in treating patients with non-Hodgkin lymphomas, chronic lymphocytic leukemia, or B-cell prolymphocytic leukemia that has come back. Placing a modified gene into white blood cells may help the body build an immune response to kill cancer cells.

ACTIVE_NOT_RECRUITING
Lenalidomide and Ibrutinib in Treating Patients With Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma
Description

This phase I trial studies the side effects and best dose of lenalidomide and ibrutinib in treating patients with B-cell non-Hodgkin lymphoma that has returned (relapsed) or not responded to treatment (refractory). Lenalidomide helps shrink or slow the growth of non-Hodgkin lymphoma. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving lenalidomide with ibrutinib may work better in treating non-Hodgkin lymphoma than giving either drug alone.

COMPLETED
Donor Umbilical Cord Blood Transplant in Treating Patients With Hematologic Cancer
Description

This phase II trial is studying how well umbilical cord blood transplant from a donor works in treating patients with hematological cancer. Giving chemotherapy and total-body irradiation (TBI) before a donor umbilical cord blood transplant helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from an unrelated donor, that do not exactly match the patient's blood, are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Giving cyclosporine and mycophenolate mofetil before and after transplant may stop this from happening.

WITHDRAWN
Antineoplaston Therapy in Treating Patients With Recurrent or Refractory Waldenstrom's Macroglobulinemia
Description

Current therapies for Recurrent or Refractory Waldenstrom's Macroglobulinemia provide very limited benefit to the patient. The anti-cancer properties of Antineoplaston therapy suggest that it may prove beneficial in the treatment of Recurrent or Refractory Waldenstrom's Macroglobulinemia. PURPOSE: This study is being performed to determine the effects (good and bad) that Antineoplaston therapy has on patients with Recurrent or Refractory Waldenstrom's Macroglobulinemia.

RECRUITING
A Study to Investigate Efficacy and Safety of BCL2 Inhibitor Sonrotoclax as Monotherapy and in Combination With Zanubrutinib in Adults With Waldenström Macroglobulinemia
Description

This study will evaluate the safety and efficacy of the BCL2 inhibitor sonrotoclax (BGB-11417) in participants with relapsed/refractory Waldenström's Macroglobulinemia (R/R WM) and in combination with zanubrutinib in adult participants with previously untreated WM.

TERMINATED
Long-term Follow-up Study in Patients Previously Treated With a Mustang Bio CAR-T Cell Investigational Product.
Description

A long-term follow-up study to assess safety and efficacy in patients previously treated with Mustang Bio chimeric antigen receptor (CAR)-T cell investigational products.

TERMINATED
Study to Assess Safety, Tolerability and Efficacy of MB-106 in Patients With Relapsed or Refractory B-Cell NHL or CLL
Description

Study to Assess the Safety, Tolerability and Efficacy of MB-106 in Patients with Relapsed or Refractory B-Cell NHL or CLL

TERMINATED
Daratumumab Plus Ibrutinib in Patients With Waldenstrӧm's Macroglobulinemia
Description

This study evaluates the safety and efficacy of daratumumab in combination with ibrutinib in patients with Waldenstrӧm's macroglobulinemia (WM). The study will evaluate this combination in two cohorts. Cohort A will comprise of ibrutinib naïve WM patients. Patients in this cohort may be treatment naïve or relapsed but who remain ibrutinib naïve. Cohort B will comprise of patients who are currently receiving ibrutinib but whose response to treatment has plateaued. In this cohort, daratumumab will be added on to ibrutinib in an attempt to deepen response.

RECRUITING
AutologousCD22 Chimeric Antigen Receptor (CAR)T Cells in w/Recurrent/Refractory B Cell Lymphomas
Description

This is a non-randomized clinical trial to evaluate the safety and efficacy of CD22CART administered after lymphodepleting chemotherapy in adults with relapsed / refractory B Cell Lymphomas. All evaluable participants will be followed for overall survival (OS), progression free survival (PFS), and duration of response (DOR). An evaluable participant is one who completes leukapheresis, lymphodepleting chemotherapy and CART infusion.

ACTIVE_NOT_RECRUITING
Genetically Modified T-cell Infusion Following Peripheral Blood Stem Cell Transplant in Treating Patients With Recurrent or High-Risk Non-Hodgkin Lymphoma
Description

This phase I trial studies the side effects and best dose of genetically modified T-cells following peripheral blood stem cell transplant in treating patients with recurrent or high-risk non-Hodgkin lymphoma. Giving chemotherapy before a stem cell transplant helps stop the growth of cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Removing the T cells from the donor cells before transplant may stop this from happening. Giving an infusion of the donor's T cells (donor lymphocyte infusion) later may help the patient's immune system see any remaining cancer cells as not belonging in the patient's body and destroy them (called graft-versus-tumor effect)

COMPLETED
MORAb-004 in Treating Young Patients With Recurrent or Refractory Solid Tumors or Lymphoma
Description

This phase I trial studies the side effects and best dose of MORAb-004 in treating young patients with recurrent or refractory solid tumors or lymphoma. Monoclonal antibodies, such as MORAb-004, can block cancer growth in different ways. Some block the ability of cancer to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them

Conditions
Adult Nasal Type Extranodal NK/T-cell LymphomaAnaplastic Large Cell LymphomaAngioimmunoblastic T-cell LymphomaChildhood Burkitt LymphomaChildhood Diffuse Large Cell LymphomaChildhood Immunoblastic Large Cell LymphomaChildhood Nasal Type Extranodal NK/T-cell LymphomaCutaneous B-cell Non-Hodgkin LymphomaExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueHepatosplenic T-cell LymphomaIntraocular LymphomaNodal Marginal Zone B-cell LymphomaNoncutaneous Extranodal LymphomaPeripheral T-cell LymphomaPost-transplant Lymphoproliferative DisorderRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-cell Leukemia/LymphomaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRecurrent/Refractory Childhood Hodgkin LymphomaRefractory Hairy Cell LeukemiaSmall Intestine LymphomaSplenic Marginal Zone LymphomaT-cell Large Granular Lymphocyte LeukemiaTesticular LymphomaUnspecified Adult Solid Tumor, Protocol SpecificUnspecified Childhood Solid Tumor, Protocol SpecificWaldenström Macroglobulinemia
COMPLETED
Alisertib in Combination With Vorinostat in Treating Patients With Relapsed or Recurrent Hodgkin Lymphoma, B-Cell Non-Hodgkin Lymphoma, or Peripheral T-Cell Lymphoma
Description

This phase I trial studies the side effects and the best dose of alisertib when given together with vorinostat in treating patients with Hodgkin lymphoma, B-cell non-Hodgkin lymphoma, or peripheral T-cell lymphoma that has come back. Alisertib and vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

COMPLETED
MK2206 in Treating Younger Patients With Recurrent or Refractory Solid Tumors or Leukemia
Description

This phase I trial is studying the side effects, best way to give, and best dose of Akt inhibitor MK2206 (MK2206) in treating patients with recurrent or refractory solid tumors or leukemia. MK2206 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

Conditions
Accelerated Phase Chronic Myelogenous LeukemiaAcute Leukemias of Ambiguous LineageAcute Myeloid Leukemia/Transient Myeloproliferative DisorderAcute Undifferentiated LeukemiaAggressive NK-cell LeukemiaAtypical Chronic Myeloid Leukemia, BCR-ABL1 NegativeBlastic Phase Chronic Myelogenous LeukemiaBlastic Plasmacytoid Dendritic Cell NeoplasmChildhood Burkitt LymphomaChildhood Chronic Myelogenous LeukemiaChildhood Diffuse Large Cell LymphomaChildhood Grade III Lymphomatoid GranulomatosisChildhood Immunoblastic Large Cell LymphomaChildhood Nasal Type Extranodal NK/T-cell LymphomaChronic Eosinophilic LeukemiaChronic Myelomonocytic LeukemiaChronic Neutrophilic LeukemiaChronic Phase Chronic Myelogenous LeukemiaIntraocular LymphomaJuvenile Myelomonocytic LeukemiaMast Cell LeukemiaMyeloid/NK-cell Acute LeukemiaNoncutaneous Extranodal LymphomaPost-transplant Lymphoproliferative DisorderPrimary Central Nervous System Hodgkin LymphomaPrimary Central Nervous System Non-Hodgkin LymphomaProgressive Hairy Cell Leukemia, Initial TreatmentProlymphocytic LeukemiaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Acute Myeloid LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRecurrent/Refractory Childhood Hodgkin LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Hairy Cell LeukemiaRelapsing Chronic Myelogenous LeukemiaSecondary Acute Myeloid LeukemiaSmall Intestine LymphomaSplenic Marginal Zone LymphomaUnspecified Childhood Solid Tumor, Protocol SpecificWaldenström Macroglobulinemia
COMPLETED
High-Dose Busulfan and High-Dose Cyclophosphamide Followed By Donor Bone Marrow Transplant in Treating Patients With Leukemia, Myelodysplastic Syndrome, Multiple Myeloma, or Recurrent Hodgkin or Non-Hodgkin Lymphoma
Description

RATIONALE: Giving high doses of chemotherapy drugs, such as busulfan and cyclophosphamide, before a donor bone marrow transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving cyclosporine, methylprednisolone, and methotrexate after transplant may stop this from happening. PURPOSE: This clinical trial studies high-dose busulfan and high-dose cyclophosphamide followed by donor bone marrow transplant in treating patients with leukemia, myelodysplastic syndrome, multiple myeloma, or recurrent Hodgkin or Non-Hodgkin lymphoma.

Conditions
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Lymphoblastic Leukemia in RemissionAdult Acute Megakaryoblastic Leukemia (M7)Adult Acute Monoblastic Leukemia (M5a)Adult Acute Monocytic Leukemia (M5b)Adult Acute Myeloblastic Leukemia With Maturation (M2)Adult Acute Myeloblastic Leukemia Without Maturation (M1)Adult Acute Myeloid Leukemia in RemissionAdult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With Del(5q)Adult Acute Myeloid Leukemia With Inv(16)(p13;q22)Adult Acute Myeloid Leukemia With T(15;17)(q22;q12)Adult Acute Myeloid Leukemia With T(16;16)(p13;q22)Adult Acute Myeloid Leukemia With T(8;21)(q22;q22)Adult Acute Myelomonocytic Leukemia (M4)Adult Acute Promyelocytic Leukemia (M3)Adult Erythroleukemia (M6a)Adult Nasal Type Extranodal NK/T-cell LymphomaAdult Pure Erythroid Leukemia (M6b)Anaplastic Large Cell LymphomaAngioimmunoblastic T-cell LymphomaBurkitt LymphomaChildhood Acute Erythroleukemia (M6)Childhood Acute Lymphoblastic Leukemia in RemissionChildhood Acute Megakaryocytic Leukemia (M7)Childhood Acute Monoblastic Leukemia (M5a)Childhood Acute Monocytic Leukemia (M5b)Childhood Acute Myeloblastic Leukemia With Maturation (M2)Childhood Acute Myeloblastic Leukemia Without Maturation (M1)Childhood Acute Myeloid Leukemia in RemissionChildhood Acute Myelomonocytic Leukemia (M4)Childhood Acute Promyelocytic Leukemia (M3)Childhood Chronic Myelogenous LeukemiaChildhood Myelodysplastic SyndromesChronic Phase Chronic Myelogenous LeukemiaCutaneous B-cell Non-Hodgkin LymphomaDe Novo Myelodysplastic SyndromesExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueHepatosplenic T-cell LymphomaIntraocular LymphomaNodal Marginal Zone B-cell LymphomaPeripheral T-Cell LymphomaPost-transplant Lymphoproliferative DisorderPreviously Treated Myelodysplastic SyndromesRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult Non-Hodgkin LymphomaRecurrent Adult T-cell Leukemia/LymphomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Acute Myeloid LeukemiaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRefractory Multiple MyelomaRelapsing Chronic Myelogenous LeukemiaSecondary Myelodysplastic SyndromesSmall Intestine LymphomaSplenic Marginal Zone LymphomaTesticular LymphomaWaldenstrom Macroglobulinemia
COMPLETED
Bendamustine Hydrochloride, Etoposide, Dexamethasone, and Filgrastim For Peripheral Blood Stem Cell Mobilization in Treating Patients With Refractory or Recurrent Lymphoma or Multiple Myeloma
Description

This phase II trial is studying how well giving bendamustine hydrochloride, etoposide, dexamethasone, and filgrastim together for peripheral stem cell mobilization works in treating patients with refractory or recurrent lymphoma or multiple myeloma. Giving chemotherapy, such as bendamustine hydrochloride, etoposide, and dexamethasone, before a peripheral stem cell transplant stops the growth of cancer cells by stopping them from dividing or killing them. Giving colony-stimulating factors, such as filgrastim, and certain chemotherapy drugs helps stem cells move from the bone marrow to the blood so they can be collected and stored

COMPLETED
Panobinostat and Everolimus in Treating Patients With Recurrent Multiple Myeloma, Non-Hodgkin Lymphoma, or Hodgkin Lymphoma
Description

This phase I/II trial studies the side effects and best dose of panobinostat and everolimus when given together and to see how well they work in treating patients with multiple myeloma, non-Hodgkin lymphoma, or Hodgkin lymphoma that has come back. Panobinostat and everolimus may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.