60 Clinical Trials for Various Conditions
This research study is looking at biomarkers in urine samples from patients with Wilms tumor. Studying samples of urine from patients with cancer in the laboratory may help doctors identify and learn more about biomarkers related to cancer. It may also help doctors predict how patients will respond to treatment
This laboratory study is using gene expression profiling to identify different categories of Wilms tumors. Studying the genes expressed in samples of tumor tissue from patients with cancer may help doctors identify biomarkers related to cancer.
This pilot clinical trial studies intensity-modulated radiation therapy (IMRT) in treating younger patients with lung metastases. Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue.
This phase II trial studies how well sorafenib tosylate works in treating younger patients with relapsed or refractory rhabdomyosarcoma, Wilms tumor, liver cancer, or thyroid cancer. Sorafenib tosylate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This randomized phase III trial is studying how well Caphosol rinse works in preventing mucositis in young patients undergoing autologous or donor stem cell transplant. Supersaturated calcium phosphate (Caphosol) rinse may be able to prevent mucositis, or mouth sores, in patients undergoing stem cell transplant.
This research study is studying biomarkers in tissue samples from patients with high-risk Wilms tumor. Studying samples of tissue from patients with cancer in the laboratory may help doctors to learn more about changes that occur in DNA and identify biomarkers related to cancer.
This phase II trial is studying the side effects and how well cixutumumab works in treating patients with relapsed or refractory solid tumors. Monoclonal antibodies, such as cixutumumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them.
RATIONALE: Giving high-dose chemotherapy before an autologous stem cell transplant stops the growth of tumor cells by stopping them from dividing or killing them. Giving colony-stimulating factors, such as G-CSF, helps stem cells move from the bone marrow to the blood so they can be collected and stored. Chemotherapy is then given to prepare the bone marrow for the stem cell transplant. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. PURPOSE: This clinical trial is studying how well giving busulfan, melphalan, and topotecan hydrochloride together with a stem cell transplant works in treating patients with newly diagnosed or relapsed solid tumor.
RATIONALE: Lithium carbonate may be an effective treatment for intestinal graft-versus-host disease caused by a donor stem cell transplant. PURPOSE: This clinical trial is studying lithium carbonate in treating patients with acute intestinal graft-versus-host-disease after donor stem cell transplant.
This phase II trial is studying how well ixabepilone works in treating young patients with refractory solid tumors. Drugs used in chemotherapy, such as ixabepilone, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing.
This phase II trial is studying how well etanercept works in treating young patients with idiopathic pneumonia syndrome after undergoing a donor stem cell transplant. Etanercept may be effective in treating patients with idiopathic pneumonia syndrome after undergoing a donor stem cell transplant.
This phase I trial is studying the side effects and best dose of oxaliplatin when given together with irinotecan in treating young patients with refractory solid tumors or lymphomas. Drugs used in chemotherapy, such as oxaliplatin and irinotecan, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Oxaliplatin may help irinotecan kill more cancer cells by making cancer cells more sensitive to the drug. Giving oxaliplatin together with irinotecan may kill more cancer cells.
Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Phase I trial to study the effectiveness of flavopiridol in treating children who have relapsed or refractory solid tumors or lymphoma.
RATIONALE: Seneca Valley virus-001 may be able to kill certain kinds of tumor cells without damaging normal cells. Adding low dose cyclophosphamide (in part B of study) may help to kill even more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of Seneca Valley virus-001 in treating young patients with relapsed or refractory neuroblastoma, rhabdomyosarcoma, or rare tumors with neuroendocrine features.
RATIONALE: Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs in chemotherapy, such as ifosfamide, carboplatin, and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving dasatinib together with ifosfamide, carboplatin, and etoposide may kill more tumor cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of dasatinib when given together with ifosfamide, carboplatin, and etoposide and to see how well they work in treating young patients with metastatic or recurrent malignant solid tumors.
RATIONALE: A peripheral blood stem cell transplant or bone marrow transplant using stem cells from the patient may be able to replace immune cells that were destroyed by chemotherapy and image-guided intensity-modulated radiation therapy used to kill tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of bone marrow radiation therapy followed by an autologous stem cell transplant in treating patients with high-risk or relapsed solid tumors.
RATIONALE: Antithymocyte globulin, clofarabine, and rituximab may stop the patient's immune system from rejecting the donor's stem cells when they do not exactly match the patient's blood. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving antithymocyte globulin before transplant and cyclosporine and mycophenolate mofetil before and after transplant may stop this from happening. PURPOSE: This phase II trial is studying how well giving antithymocyte globulin together with clofarabine and rituximab works in treating patients after an unsuccessful stem cell transplant.
RATIONALE: Vaccines may help the body build an effective immune response to kill cytomegalovirus infections. PURPOSE: This phase I trial is studying the side effects and best dose of vaccine therapy in treating patients who have undergone a donor stem cell transplant and have cytomegalovirus infection that has not responded to therapy.
RATIONALE: Methotrexate and glucocorticoid therapy, such as prednisone or methylprednisolone, may be an effective treatment for acute graft-versus-host disease caused by a donor stem cell transplant. PURPOSE: This phase II trial is studying how well giving methotrexate together with glucocorticoids works in treating patients with newly diagnosed acute graft-versus-host disease after donor stem cell transplant.
RATIONALE: Talabostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving talabostat together with temozolomide or carboplatin may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of talabostat when given together with temozolomide or carboplatin in treating young patients with relapsed or refractory brain tumors or other solid tumors.
RATIONALE: A bone marrow transplant from a brother or sister may be able to replace blood-forming cells that were destroyed by chemotherapy or radiation therapy. Colony-stimulating factors, such as G-CSF, cause the body to make blood cells. Giving G-CSF to the donor may help the body make more stem cells that can be collected for bone marrow transplant and may cause fewer side effects in the patient after the transplant. PURPOSE: This phase I/II trial is studying the side effects of donor bone marrow transplant and to see how well it works in treating young patients with cancer or a non-cancerous disease.
RATIONALE: Studying samples of blood from patients with cancer in the laboratory may help doctors learn more about changes that may occur in DNA and identify biomarkers related to cancer. PURPOSE: This laboratory study is looking at DNA variations in the RASSF1A gene in young patients with Wilms' tumor.
RATIONALE: Traumeel® S (a mouth rinse) may be effective in preventing or decreasing the severity of oral mucositis caused by chemotherapy in young patients who are undergoing stem cell transplantation. PURPOSE: This randomized clinical trial is studying how well Traumeel® S works in preventing or treating mucositis in young patients who are receiving chemotherapy with or without total-body irradiation before undergoing stem cell transplantation.
RATIONALE: Voriconazole may be effective in preventing systemic fungal infections following chemotherapy. PURPOSE: Phase II trial to study the effectiveness of voriconazole in preventing systemic fungal infections in children who have neutropenia after receiving chemotherapy for leukemia, lymphoma, or aplastic anemia or in preparation for bone marrow or stem cell transplantation.
RATIONALE: Antivirals such as valacyclovir act against viruses and may be effective in preventing cytomegalovirus. It is not yet known if valacyclovir is effective in preventing cytomegalovirus in patients undergoing stem cell transplantation. PURPOSE: Randomized phase III trial to determine the effectiveness of valacyclovir in preventing cytomegalovirus in patients who are undergoing donor stem cell transplantation.
RATIONALE: Drugs used in chemotherapy, such as ABT-751, work in different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: This phase I trial is studying the side effects of ABT-751 in treating young patients with refractory solid tumors.
RATIONALE: Light-emitting diode (LED) therapy may be able to prevent mucositis of the mouth. PURPOSE: Randomized phase II trial to determine the effectiveness of LED therapy in preventing mucositis of the mouth in children who are receiving chemotherapy with or without radiation therapy before donor bone marrow transplantation.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: This phase I trial is studying the side effects and best dose of ixabepilone in treating young patients with relapsed or refractory solid tumors or leukemia.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase II trial to study the effectiveness of arsenic trioxide in treating children who have advanced neuroblastoma or other solid tumors.
RATIONALE: Giving caspofungin acetate may be effective in preventing or controlling fever and neutropenia caused by chemotherapy or bone marrow transplantation. PURPOSE: Clinical trial to study the effectiveness of caspofungin acetate in treating children who have fever and neutropenia caused by a weakened immune system.