239 Clinical Trials for Various Conditions
Functional precision medicine (FPM) is a relatively new approach to cancer therapy based on direct exposure of patient- isolated tumor cells to clinically approved drugs and integrates ex vivo drug sensitivity testing (DST) and genomic profiling to determine the optimal individualized therapy for cancer patients. In this study, we will enroll relapsed or refractory pediatric cancer patients with tissue available for DST and genomic profiling from the South Florida area, which is 69% Hispanic and 18% Black. Tumor cells collected from tissue taken during routine biopsy or surgery will be tested.
This study is a prospective, non-randomized feasibility study. Freshly isolated tumor cells from patients will be screened using state-of-the-art viability assay designed for ex vivo high-throughput drug sensitivity testing (DST). In addition, genetic information will be obtained from cancer and normal (germline) tissue and correlated with drug response. This study will provide the platform for informing treating physician about individualized treatment options. The main outcome of this study will be the proportions of the patients whose treatment was guided by the personalized medicine approach.
The purpose of this research study is to determine the acceptable upper limit dose of nivolumab in combination with dasatinib that may be given to patients with relapsed/refractory philadelphia chromosome positive acute lymphoblastic leukemia (Ph+ ALL). Nivolumab is currently Food and Drug Administration (FDA) approved for other cancers, but has not yet been investigated in Ph+ ALL. Dasatinib is currently FDA approved for the treatment of Ph+ ALL, but has not yet been investigated in combination with nivolumab for this disease. There is evidence that dasatinib not only blocks the Philadelphia chromosome or breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 (BCR-ABL) mutation, but also increases the activity of cells in your immune system. Nivolumab increases T cells in your immune system, which allows your immune system to attack the cancer. We think the combination of these drugs will be more effective against your leukemia than either drug used alone.
This phase II trial studies how well T cell depleted donor peripheral blood stem cell transplant works in preventing graft-versus-host disease in younger patients with high risk hematologic malignancies. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Removing a subset of the T cells from the donor cells before transplant may stop this from happening.
This is a phase 1/2 study of a drug called Ixazomib in combination with cytotoxic chemotherapy consisting of Vincristine, Dexamethasone, Asparaginase, and Doxorubicin (VXLD).
This phase I trial studies the side effects and best dose of CD4+ and CD8+ HA-1 T cell receptor (TCR) (HA-1 T TCR) T cells in treating patients with acute leukemia that persists, has come back (recurrent) or does not respond to treatment (refractory) following donor stem cell transplant. T cell receptor is a special protein on T cells that helps them recognize proteins on other cells including leukemia. HA-1 is a protein that is present on the surface of some peoples' blood cells, including leukemia. HA-1 T cell immunotherapy enables genes to be added to the donor cells to make them recognize HA-1 markers on leukemia cells.
This phase I trial studies the best dose and side effects of CD19/CD22 chimeric antigen receptor (CAR) T cells when given together with chemotherapy, and to see how well they work in treating children or young adults with CD19 positive B acute lymphoblastic leukemia that has come back or does not respond to treatment. A CAR is a genetically-engineered receptor made so that immune cells (T cells) can attack cancer cells by recognizing and responding to the CD19/CD22 proteins. These proteins are commonly found on B acute lymphoblastic leukemia. Drugs used in chemotherapy, such as fludarabine phosphate and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving CD19/CD22-CAR T cells and chemotherapy may work better in treating children or young adults with B acute lymphoblastic leukemia.
This research study involves participants who have acute lymphoblastic or acute myelogenous leukemia that has relapsed or has become resistant (or refractory) to standard therapies. This research study is evaluating a drug called KPT-330. Laboratory and other studies suggest that the study drug, KPT-330, may prevent leukemia cells from growing and may lead to the destruction of leukemia cells. It is thought that KPT-330 activates cellular processes that increase the death of leukemia cells. The main goal of this study is to evaluate the side effects of KPT-330 when it is administered to children and adolescents with relapsed or refractory leukemia.
The overall objective of this protocol is to improve the cure rate of relapsed precursor B-cell acute lymphoblastic leukemia (ALL) and lymphoblastic lymphoma. This phase II trial is studying risk-directed therapy for B-lymphoblastic leukemia or lymphoma in first relapse. Standard risk (SR) and high risk (HR) participants will receive different therapy. Treatment will consist of chemotherapy for SR participants, and chemotherapy followed by hematopoietic stem cell transplant (HSCT) for HR in first relapse. Induction therapy consists of three blocks of chemotherapy. The first block is a novel immunotherapy regimen that includes chemotherapy, rituximab and infusion of haploidentical natural killer (NK) cells. SR participants will continue to receive chemotherapy for a total duration of approximately 2 years. HR participants will be candidates for HSCT and will proceed to transplant once a suitable donor is found and their minimal residual disease (MRD) is negative.
This phase I/II trial is studying the side effects and best dose of sorafenib in treating young patients with relapsed or refractory solid tumors or leukemia. Sorafenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer.
H. Lee Moffitt Cancer Center and Research Institute will be the Sunshine Project Coordinator, but will not be recruiting locally. The purpose of the trial is to study the clinical and biological effects of metformin in combination with standard systemic chemotherapy in a disease (relapsed ALL) that has a dismal outcome, as well as to do a dose escalation study to find the Maximum Tolerated Dose (MTD) of metformin in conjunction with ALL therapy. There have also been analysis of patients enrolled on trials who were diabetics on metformin and their outcome was better than patients on the same trial that were not on metformin as their antihyperglycemic.
This phase I trial is studying the side effects, best way to give, and best dose of Akt inhibitor MK2206 (MK2206) in treating patients with recurrent or refractory solid tumors or leukemia. MK2206 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
RATIONALE: INCB18424 (Ruxolitinib) may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase 1 clinical trial is studying the side effects and best dose of INCB18424 in treating young patients with relapsed or refractory solid tumor, leukemia, or myeloproliferative disease.
This phase II trial is studying the side effects of and how well alisertib works in treating young patients with relapsed or refractory solid tumors or leukemia. Alisertib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase I/II clinical trial is studying the side effects and best dose of gamma-secretase inhibitor RO4929097 and to see how well it works in treating young patients with relapsed or refractory solid tumors, CNS tumors, lymphoma, or T-cell leukemia. Gamma-secretase inhibitor RO4929097 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase I trial is studying the side effects and best dose of obatoclax mesylate when given together with vincristine sulfate, doxorubicin hydrochloride, and dexrazoxane hydrochloride in treating young patients with relapsed or refractory solid tumors, lymphoma, or leukemia. Obatoclax mesylate may stop the growth of cancer cells by blocking some of the proteins needed for cell growth and causing the cells to self-destruct. Drugs used in chemotherapy, such as vincristine sulfate, doxorubicin hydrochloride, and dexrazoxane hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving obatoclax mesylate together with combination chemotherapy may kill more cancer cells.
This is a phase I dose escalation study of DT2219ARL for the treatment of relapsed or refractory B-lineage leukemia and lymphoma. Patients will receive a single course of DT2219ARL as a 4 hour infusion on days 1, 3, 5, and 8. Weekly follow-up will continue through day 29, at which time a disease reassessment will be done. For patients in remission, follow-up will continue monthly until disease progression or start of a new treatment. Otherwise day 29 will be the final study visit if there is no ongoing toxicity. This phase I study will use Continual Reassessment Method (CRM) to establish a maximum tolerated dose (MTD) of DT2219ARL. Up to 3 dose levels will be tested with an additional dose level (-1) if dose level 1 proves too toxic. The goal of CRM is to identify the dose level which correspondences to a desired toxicity rate of 33% or less using grade 3 or 4 capillary leak syndrome and any grade 3 or greater toxicity attributed to DT2219ARL as the targeted toxicity (based on CTCAE version 4).
This phase II trial studies giving rituximab before and after a donor peripheral blood stem cell transplant in patients with B-cell lymphoma that does not respond to treatment (refractory) or has come back after a period of improvement (relapsed). Monoclonal antibodies, such as rituximab, can interfere with the ability of cancer cells to grow and spread. Giving rituximab before and after a donor peripheral blood stem cell transplant may help stop cancer from coming back and may help keep the patient's immune system from rejecting the donor's stem cells.
RATIONALE: Giving chemotherapy and total marrow irradiation before a donor umbilical cord blood or hematopoietic stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening. PURPOSE: This phase I trial is studying the side effects and best dose of total marrow irradiation when given together with combination chemotherapy and umbilical cord blood hematopoietic stem cell transplant in treating patients with acute leukemia, acute myeloid leukemia or multiple myeloma that did not respond to previous therapy.
RATIONALE: Radiolabeled monoclonal antibodies can find cancer cells and carry cancer-killing substances to them without harming normal cells. This may be effective treatment for leukemia. PURPOSE: This phase I trial is studying the best dose of yttrium Y 90-labeled monoclonal antibody BU-12 in treating patients with advanced relapsed or refractory acute lymphoblastic leukemia or chronic lymphocytic leukemia.
RATIONALE: Giving intensity modulated radiation therapy (IMRT) and chemotherapy, such as etoposide and cyclophosphamide, before a donor stem cell transplant helps stop the growth of cancer cells. It also helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving IMRT together with chemotherapy before transplant may stop this from happening. PURPOSE: This phase I/II trial is studying the side effects and best dose of intensity-modulated radiation therapy (IMRT) when given together with etoposide and cyclophosphamide followed by donor stem cell transplant and to see how well they work in treating patients with relapsed or refractory acute lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML).
RATIONALE: Drugs used in chemotherapy, such as clofarabine, topotecan, vinorelbine, thiotepa, and dexamethasone, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. PURPOSE: This phase I trial is studying the side effects and best dose of clofarabine when given together with topotecan, vinorelbine, thiotepa, and dexamethasone in treating young patients with relapsed or refractory acute leukemia.
RATIONALE: Drugs used in chemotherapy, such as clofarabine and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of clofarabine when given together with cytarabine and to see how well they work in treating young patients with refractory or relapsed acute myeloid leukemia or acute lymphoblastic leukemia. (Phase I closed to enrollment as of 09/16/09)
This phase I trial is studying the side effects and best dose of dasatinib in treating young patients with recurrent or refractory solid tumors or Philadelphia chromosome-positive acute lymphoblastic leukemia or chronic myelogenous leukemia that did not respond to imatinib mesylate. Dasatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth
RATIONALE: Drugs used in chemotherapy, such as clofarabine and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. PURPOSE: This phase I trial is studying the side effects and best dose of clofarabine and cyclophosphamide in treating patients with relapsed or refractory acute leukemia, chronic myelogenous leukemia, or myeloproliferative disorders.
This phase I trial is studying the side effects and best dose of vorinostat when given together with isotretinoin in treating young patients with recurrent or refractory solid tumors, lymphoma, or leukemia. Drugs used in chemotherapy, such as vorinostat, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Vorinostat may also stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Isotretinoin may cause cancer cells to look more like normal cells, and to grow and spread more slowly. Giving vorinostat together with isotretinoin may be an effective treatment for cancer.
This phase I trial is studying the side effects and best dose of oxaliplatin and etoposide in treating young patients with recurrent or refractory solid tumors or lymphomas. Drugs used in chemotherapy, such as oxaliplatin and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Oxaliplatin may also help etoposide work better by making cancer cells more sensitive to the drug. Giving oxaliplatin together with etoposide may kill more cancer cells.
This phase I trial is studying the side effects and best dose of tanespimycin in treating young patients with recurrent or refractory leukemia or selected solid tumors. Drugs used in chemotherapy, such as tanespimycin, work in different ways to stop cancer cells from dividing so they stop growing or die.
RATIONALE: LMB-2 immunotoxin can locate cancer cells and kill them without harming normal cells. PURPOSE: This phase I trial is studying the side effects and best dose of LMB-2 immunotoxin in treating young patients with relapsed or refractory leukemia or lymphoma.
RATIONALE: Drugs used in chemotherapy, such as temozolomide, work in different ways to stop cancer cells from dividing so they stop growing or die. PURPOSE: This phase I trial is studying the side effects and best dose of temozolomide in treating young patients with refractory or recurrent leukemia.