37 Clinical Trials for Various Conditions
This phase I/II trial tests the safety, side effects and best dose of DT2216 in combination with irinotecan and how well it works in treating children, adolescents and young adults with solid tumors and fibrolamellar cancer that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). DT2216 is an anti-apoptotic protein B-cell lymphoma-extra large targeted protein degrader. It may stop the growth of tumor cells by blocking Bcl-xL, a protein needed for tumor cell survival. Irinotecan is in a class of antineoplastic medications called topoisomerase I inhibitors. It blocks a certain enzyme needed for cell division and deoxyribonucleic acid repair and may kill tumor cells. Giving DT2216 in combination with irinotecan may be safe, tolerable, and/or effective in treating children, adolescents and young adults with relapsed or refractory solid tumors or fibrolamellar cancer.
Functional precision medicine (FPM) is a relatively new approach to cancer therapy based on direct exposure of patient- isolated tumor cells to clinically approved drugs and integrates ex vivo drug sensitivity testing (DST) and genomic profiling to determine the optimal individualized therapy for cancer patients. In this study, we will enroll relapsed or refractory pediatric cancer patients with tissue available for DST and genomic profiling from the South Florida area, which is 69% Hispanic and 18% Black. Tumor cells collected from tissue taken during routine biopsy or surgery will be tested.
This phase II Pediatric MATCH trial studies how well olaparib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with defects in deoxyribonucleic acid (DNA) damage repair genes that have spread to other places in the body (advanced) and have come back (relapsed) or do not respond to treatment (refractory). Olaparib is an inhibitor of PARP, an enzyme that helps repair DNA when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy.
This phase II Pediatric MATCH trial studies how well erdafitinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with FGFR mutations that have spread to other places in the body and have come back or do not respond to treatment. Erdafitinib may stop the growth of cancer cells with FGFR mutations by blocking some of the enzymes needed for cell growth.
RATIONALE: Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs in chemotherapy, such as ifosfamide, carboplatin, and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving dasatinib together with ifosfamide, carboplatin, and etoposide may kill more tumor cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of dasatinib when given together with ifosfamide, carboplatin, and etoposide and to see how well they work in treating young patients with metastatic or recurrent malignant solid tumors.
This phase II Pediatric MATCH trial studies how well palbociclib works in treating patients with Rb positive solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with activating alterations (mutations) in cell cycle genes that have spread to other places in the body and have come back or do not respond to treatment. Palbociclib may stop the growth of cancer cells by blocking some of the proteins needed for cell growth.
This phase II Pediatric MATCH trial studies how well vemurafenib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with BRAF V600 mutations that have spread to other places in the body (advanced) and have come back (recurrent) or do not respond to treatment (refractory). Vemurafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase II Pediatric MATCH trial studies how well selumetinib sulfate works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with MAPK pathway activation mutations that have spread to other places in the body and have come back or do not respond to treatment. Selumetinib sulfate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This Pediatric MATCH screening and multi-sub-study phase II trial studies how well treatment that is directed by genetic testing works in pediatric patients with solid tumors, non-Hodgkin lymphomas, or histiocytic disorders that have progressed following at least one line of standard systemic therapy and/or for which no standard treatment exists that has been shown to prolong survival. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic changes or abnormalities (mutations) may benefit more from treatment which targets their tumor's particular genetic mutation, and may help doctors plan better treatment for patients with solid tumors or non-Hodgkin lymphomas.
This phase I trial studies the side effects and best dose of nanoparticle albumin-bound rapamycin when given together with temozolomide and irinotecan hydrochloride in treating pediatric patients with solid tumors that have come back after treatment and a period of time during which the tumor could not be detected or has not responded to treatment. Nanoparticle albumin-bound rapamycin may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as temozolomide and irinotecan hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving nanoparticle albumin-bound rapamycin, temozolomide, and irinotecan hydrochloride may cause the cancer to stop growing or shrink for a period of time and may lessen the symptoms that are caused by the cancer.
This phase II trial studies how well cabozantinib-s-malate works in treating younger patients with sarcomas, Wilms tumor, or other rare tumors that have come back, do not respond to therapy, or are newly diagnosed. Cabozantinib-s-malate may stop the growth of tumor cells by blocking some of the enzymes needed for tumor growth and tumor blood vessel growth.
This phase I trial studies the side effects and best dose of prexasertib in treating pediatric patients with solid tumors that have come back after a period of time during which the tumor could not be detected or does not respond to treatment. Checkpoint kinase 1 inhibitor LY2606368 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase I trial studies the side effects and best dose of selinexor in treating younger patients with solid tumors or central nervous system (CNS) tumors that have come back (recurrent) or do not respond to treatment (refractory). Drugs used in chemotherapy, such as selinexor, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
This phase I/II trial studies the side effects and best dose of talazoparib and temozolomide and to see how well they work in treating younger patients with tumors that have not responded to previous treatment (refractory) or have come back (recurrent). Talazoparib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving talazoparib together with temozolomide may work better in treating younger patients with refractory or recurrent malignancies.
This phase I/II trial studies the side effects and best dose of adavosertib and irinotecan hydrochloride in treating younger patients with solid tumors that have come back (relapsed) or that have not responded to standard therapy (refractory). Adavosertib and irinotecan hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This is a Phase I study of the combination of three drugs: sirolimus, cyclophosphamide, and topotecan. This is the first study to evaluate the safety and clinical activity of the combination of oral sirolimus, oral cyclophosphamide and oral topotecan in pediatric and young adult patients with relapsed and refractory solid tumors. In this phase I study, the mTOR inhibitor sirolimus will be administered in combination with oral cyclophosphamide and oral topotecan to children with relapsed or refractory solid tumors. The primary aim of this study is to recommend a phase II dose schedule and describe the toxicity of this combination. Myelosuppression will be a targeted toxicity.
This phase II trial is studying the side effects of and how well alisertib works in treating young patients with relapsed or refractory solid tumors or leukemia. Alisertib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase I trial is studying the side effects and best dose of vorinostat when given together with bortezomib in treating young patients with refractory or recurrent solid tumors, including CNS tumors and lymphoma. Vorinostat and bortezomib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.
This phase 1/2 trial the studies side effects and best dose of crizotinib and to see how well it works in treating young patients with solid tumors or anaplastic large cell lymphoma that has returned after a period of improvement or does not respond to treatment. Crizotinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. (Phase 1 completed 2/15/13)
This pilot trial studies different high-dose chemotherapy regimens with or without total-body irradiation (TBI) to compare how well they work when given before autologous stem cell transplant (ASCT) in treating patients with hematologic cancer or solid tumors. Giving high-dose chemotherapy with or without TBI before ASCT stops the growth of cancer cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's blood or bone marrow and stored. More chemotherapy may be given to prepare for the stem cell transplant. The stem cells are then returned to the patient to replace the blood forming cells that were destroyed by the chemotherapy.
RATIONALE: Giving chemotherapy before a donor umbilical cord blood stem cell transplant helps stop the growth of tumor cells. It also helps stop the patient's immune system from rejecting the donor's stem cells when they do not exactly match the patient's blood. The donated stem cells may replace the patient's immune cells and help destroy any remaining tumor cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and methylprednisolone after the transplant may stop this from happening. PURPOSE: This phase I trial is studying the side effects of busulfan, melphalan, and antithymocyte globulin followed by umbilical cord blood transplant in treating young patients with refractory or relapsed malignant solid tumors.
RATIONALE: Talabostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving talabostat together with temozolomide or carboplatin may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of talabostat when given together with temozolomide or carboplatin in treating young patients with relapsed or refractory brain tumors or other solid tumors.
This phase I trial is studying the side effects and best dose of oxaliplatin when given together with irinotecan in treating young patients with refractory solid tumors or lymphomas. Drugs used in chemotherapy, such as oxaliplatin and irinotecan, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Oxaliplatin may help irinotecan kill more cancer cells by making cancer cells more sensitive to the drug. Giving oxaliplatin together with irinotecan may kill more cancer cells.
RATIONALE: Umbilical cord blood transplantation may be able to replace immune cells that were destroyed by chemotherapy or radiation therapy. PURPOSE: This phase II trial is studying how well umbilical cord blood works as a source of stem cells in treating patients with types of cancer as well as other diseases.
This phase I trial is studying the side effects and best dose of erlotinib when given with temozolomide in treating young patients with recurrent or refractory solid tumors. Erlotinib may stop the growth of tumor cells by blocking the enzymes necessary for their growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop tumor cells from dividing so they stop growing or die. Giving erlotinib with temozolomide may kill more tumor cells.
RATIONALE: Radiation therapy uses high-energy x-rays to damage cancer cells. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining chemotherapy with autologous stem cell transplantation or autologous bone marrow transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more cancer cells. PURPOSE: This phase II trial is studying how well eight different high-dose chemotherapy regimens with or without total-body irradiation followed by autologous stem cell transplantation or autologous bone marrow transplantation works in treating patients with hematologic malignancies or solid tumors.
RATIONALE: Drugs used in chemotherapy, such as ABT-751, work in different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: This phase I trial is studying the side effects of ABT-751 in treating young patients with refractory solid tumors.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase I trial to study the effectiveness of liposomal doxorubicin in treating children who have refractory solid tumors.
Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Phase I trial to study the effectiveness of flavopiridol in treating children who have relapsed or refractory solid tumors or lymphoma.
RATIONALE: Interleukin-11 and filgrastim stimulate the production of blood cells. Giving these drugs to stimulate peripheral stem cells that can be collected for peripheral stem cell transplantation may result in fewer side effects after transplant. PURPOSE: Phase II trial to study the effectiveness of interleukin-11 plus filgrastim prior to peripheral stem cell transplantation in patients who have non-Hodgkin's lymphoma, Hodgkin's disease, breast cancer, or other solid tumors.