Treatment Trials

172 Clinical Trials for Various Conditions

Focus your search

RECRUITING
A Study to Find the Highest Dose of Imetelstat in Combination With Fludarabine and Cytarabine for Patients With AML, MDS or JMML That Has Come Back or Does Not Respond to Therapy
Description

This phase I trial tests the safety, side effects, and best dose of imetelstat in combination with fludarabine and cytarabine in treating patients with acute myeloid leukemia (AML), myelodysplastic syndrome (MDS) or juvenile myelomonocytic leukemia (JMML) that has not responded to previous treatment (refractory) or that has come back after a period of improvement (recurrent). Imetelstat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as fludarabine and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving imetelstat in combination with fludarabine and cytarabine may work better in treating patients with refractory or recurrent AML, MDS, and JMML.

COMPLETED
INCB18424 in Treating Young Patients With Relapsed or Refractory Solid Tumor, Leukemia, or Myeloproliferative Disease
Description

RATIONALE: INCB18424 (Ruxolitinib) may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase 1 clinical trial is studying the side effects and best dose of INCB18424 in treating young patients with relapsed or refractory solid tumor, leukemia, or myeloproliferative disease.

TERMINATED
Donor Stem Cell Transplant in Treating Patients With Relapsed Hematologic Malignancies or Secondary Myelodysplasia Previously Treated With High-Dose Chemotherapy and Autologous Stem Cell Transplant
Description

RATIONALE: Giving chemotherapy, such as busulfan and fludarabine phosphate, before a peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving methotrexate, tacrolimus, and antithymocyte globulin before and after the transplant may stop this from happening. Once the donated stem cells begin working, the patient's immune system may see the remaining cancer cells as not belonging in the patient's body and destroy them (called graft-versus-tumor effect). Giving an infusion of the donor's white blood cells (donor lymphocyte infusion) may boost this effect. PURPOSE: This phase II trial is studying how well donor stem cell transplant works in treating patients with relapsed hematologic malignancies or secondary myelodysplasia previously treated with high-dose chemotherapy and autologous stem cell transplant .

COMPLETED
Donor Stem Cell Transplant in Treating Young Patients With Acute Myeloid Leukemia With Monosomy 7, -5/5q-, High FLT3-ITD AR, or Refractory or Relapsed Acute Myelogenous Leukemia
Description

RATIONALE: Giving chemotherapy before a donor stem cell transplant using stem cells that closely match the patient's stem cells, helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving antithymocyte globulin before transplant and cyclosporine, tacrolimus, and methotrexate before and after transplant may stop this from happening. PURPOSE: Natural Killer (NK) cells from the donor's bone marrow may be important in fighting leukemia. Bone marrow donors can be selected based on the type of NK cells they have, specifically the killer immunoglobulin receptor (KIR) type. This study provides information on KIR type from potential donors, which can be used in selecting the bone marrow donor. This phase II trial of unrelated donor stem cell transplant in patients with high risk AML (monosomy 7, -5/5q-, high FLT3-ITD AR, or refractory or relapsed AML) in which KIR typing of the patients and potential donors will be available to the treating transplant physician at the time of donor selection.

Conditions
TERMINATED
Donor Umbilical Cord Blood Natural Killer Cells, Aldesleukin and Umbilical Cord Blood Transplant in Patients With Refractory Hematologic Cancers.
Description

RATIONALE: Giving chemotherapy, natural killer cells, aldesleukin, and total-body irradiation before a donor umbilical cord blood stem cell transplant helps stop the growth of abnormal cells and cancer cells. It also helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving cyclosporine, mycophenolate mofetil, and methylprednisolone before and after transplant may stop this from happening. PURPOSE: This clinical trial is studying how well giving fludarabine and cyclophosphamide together with total-body irradiation followed by donor umbilical cord blood natural killer cells, aldesleukin, and umbilical cord blood transplant works in treating patients with refractory hematologic cancer or other diseases.

COMPLETED
Lenalidomide in Treating Young Patients With Relapsed or Refractory Solid Tumors or Myelodysplastic Syndromes
Description

This phase I trial is studying the side effects and best dose of lenalidomide in treating young patients with relapsed or refractory solid tumors or myelodysplastic syndromes. Lenalidomide may stop the growth of solid tumors or myelodysplastic syndromes by blocking blood flow to the cancer. It may also stimulate the immune system in different ways and stop cancer cells from growing.

COMPLETED
Fludarabine, Carboplatin, and Topotecan in Treating Patients With Relapsed/Refractory Acute Leukemia or Advanced Myelodysplastic Syndrome
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining more than one drug may kill more cancer cells. PURPOSE: Phase I trial to study the effectiveness of fludarabine, carboplatin, and topotecan in treating patients who have relapsed or refractory acute leukemia or advanced myelodysplastic syndrome.

COMPLETED
Cytarabine and UCN-01 in Treating Patients With Refractory or Relapsed Acute Myelogenous Leukemia or Myelodysplastic Syndrome
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. UCN-01 may make cancer cells more sensitive to cytarabine. PURPOSE: Phase I trial to study the effectiveness of cytarabine and UCN-01 in treating patients who have refractory or relapsed acute myelogenous leukemia or myelodysplastic syndrome.

COMPLETED
Dolastatin 10 in Treating Patients With Refractory or Relapsed Acute Leukemia, Myelodysplastic Syndrome, or Chronic Myelogenous Leukemia
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. PURPOSE: Phase I trial to study the effectiveness of dolastatin 10 in treating patients who have refractory or relapsed acute leukemia, chronic myelogenous leukemia in blast phase, or myelodysplastic syndrome.

COMPLETED
Monoclonal Antibody Therapy in Treating Patients With Myelodysplastic Syndrome or Relapsed or Refractory Acute Myeloid Leukemia or Chronic Myelogenous Leukemia
Description

RATIONALE: Monoclonal antibodies can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. PURPOSE: Phase I trial to study the effectiveness of radiolabeled monoclonal antibody in treating patients with myelodysplastic syndrome or relapsed or refractory acute myeloid leukemia or chronic myelogenous leukemia.

COMPLETED
Combination Chemotherapy and Bone Marrow Transplantation in Treating Patients With Leukemia or Myelodysplastic Syndrome
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining chemotherapy with bone marrow transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more cancer cells. PURPOSE: Phase II trial to study the effectiveness of combination chemotherapy consisting of busulfan and cyclophosphamide followed by bone marrow transplantation in treating patients who have acute or chronic leukemia or myelodysplastic syndrome.

TERMINATED
Sirolimus and Mycophenolate Mofetil in Preventing GVHD in Patients With Hematologic Malignancies Undergoing HSCT
Description

This pilot phase I/II trial studies the side effects and how well sirolimus and mycophenolate mofetil work in preventing graft versus host disease (GvHD) in patients with hematologic malignancies undergoing hematopoietic stem cell transplant (HSCT). Biological therapies, such as sirolimus and mycophenolate mofetil, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop tumor cells from growing. Giving sirolimus and mycophenolate mofetil after hematopoietic stem cell transplant may be better in preventing graft-versus-host disease.

COMPLETED
Selective Depletion of CD45RA+ T Cells From Allogeneic Peripheral Blood Stem Cell Grafts in Preventing GVHD in Children
Description

This phase II trial studies how well T cell depleted donor peripheral blood stem cell transplant works in preventing graft-versus-host disease in younger patients with high risk hematologic malignancies. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Removing a subset of the T cells from the donor cells before transplant may stop this from happening.

COMPLETED
Donor T Cells After Donor Stem Cell Transplant in Treating Patients With Hematologic Malignancies
Description

This pilot phase II trial studies how well giving donor T cells after donor stem cell transplant works in treating patients with hematologic malignancies. In a donor stem cell transplant, the donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect.

Conditions
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With Del(5q)Adult Acute Myeloid Leukemia With Inv(16)(p13;q22)Adult Acute Myeloid Leukemia With t(15;17)(q22;q12)Adult Acute Myeloid Leukemia With t(16;16)(p13;q22)Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)Adult Nasal Type Extranodal NK/T-cell LymphomaAnaplastic Large Cell LymphomaAngioimmunoblastic T-cell LymphomaBlastic Phase Chronic Myelogenous LeukemiaChildhood Burkitt LymphomaChildhood Chronic Myelogenous LeukemiaChildhood Diffuse Large Cell LymphomaChildhood Immunoblastic Large Cell LymphomaChildhood Myelodysplastic SyndromesChildhood Nasal Type Extranodal NK/T-cell LymphomaChronic Phase Chronic Myelogenous LeukemiaCutaneous B-cell Non-Hodgkin Lymphomade Novo Myelodysplastic SyndromesExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueHepatosplenic T-cell LymphomaIntraocular LymphomaNodal Marginal Zone B-cell LymphomaNoncutaneous Extranodal LymphomaPeripheral T-cell LymphomaPost-transplant Lymphoproliferative DisorderPreviously Treated Myelodysplastic SyndromesRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-cell Leukemia/LymphomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Acute Myeloid LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRecurrent/Refractory Childhood Hodgkin LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Hairy Cell LeukemiaRelapsing Chronic Myelogenous LeukemiaSecondary Myelodysplastic SyndromesSmall Intestine LymphomaSplenic Marginal Zone LymphomaT-cell Large Granular Lymphocyte LeukemiaTesticular LymphomaWaldenström Macroglobulinemia
COMPLETED
Fludarabine Phosphate, Melphalan, and Low-Dose Total-Body Irradiation Followed by Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Hematologic Malignancies
Description

This phase II trial studies how well giving fludarabine phosphate, melphalan, and low-dose total-body irradiation (TBI) followed by donor peripheral blood stem cell transplant (PBSCT) works in treating patients with hematologic malignancies. Giving chemotherapy drugs such as fludarabine phosphate and melphalan, and low-dose TBI before a donor PBSCT helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from the donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cell from a donor can make an immune response against the body's normal cells. Giving tacrolimus, mycophenolate mofetil (MMF), and methotrexate after transplant may stop this from happening

Conditions
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Lymphoblastic Leukemia in RemissionAdult Acute Myeloid Leukemia in RemissionAdult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With Del(5q)Adult Acute Myeloid Leukemia With Inv(16)(p13;q22)Adult Acute Myeloid Leukemia With t(15;17)(q22;q12)Adult Acute Myeloid Leukemia With t(16;16)(p13;q22)Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)Adult Grade III Lymphomatoid GranulomatosisAdult Nasal Type Extranodal NK/T-cell LymphomaAnaplastic Large Cell LymphomaAngioimmunoblastic T-cell LymphomaAplastic AnemiaBurkitt LymphomaChildhood Acute Lymphoblastic Leukemia in RemissionChildhood Acute Myeloid Leukemia in RemissionChildhood Chronic Myelogenous LeukemiaChildhood Diffuse Large Cell LymphomaChildhood Grade III Lymphomatoid GranulomatosisChildhood Immunoblastic Large Cell LymphomaChildhood Myelodysplastic SyndromesChildhood Nasal Type Extranodal NK/T-cell LymphomaChronic Myelomonocytic LeukemiaChronic Phase Chronic Myelogenous LeukemiaCongenital Amegakaryocytic ThrombocytopeniaDiamond-Blackfan AnemiaExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueHepatosplenic T-cell LymphomaJuvenile Myelomonocytic LeukemiaMyelodysplastic/Myeloproliferative Neoplasm, UnclassifiableNodal Marginal Zone B-cell LymphomaParoxysmal Nocturnal HemoglobinuriaPeripheral T-cell LymphomaPolycythemia VeraPost-transplant Lymphoproliferative DisorderPreviously Treated Myelodysplastic SyndromesPrimary MyelofibrosisRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-cell Leukemia/LymphomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Acute Myeloid LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRecurrent/Refractory Childhood Hodgkin LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Hairy Cell LeukemiaRefractory Multiple MyelomaSecondary Acute Myeloid LeukemiaSecondary Myelodysplastic SyndromesSecondary MyelofibrosisSevere Combined ImmunodeficiencySevere Congenital NeutropeniaShwachman-Diamond SyndromeSplenic Marginal Zone LymphomaT-cell Large Granular Lymphocyte LeukemiaWaldenstrom MacroglobulinemiaWiskott-Aldrich Syndrome
COMPLETED
Cyclophosphamide for Prevention of Graft-Versus-Host Disease After Allogeneic Peripheral Blood Stem Cell Transplantation in Patients With Hematological Malignancies
Description

This phase II trial studies how well cyclophosphamide works in preventing chronic graft-versus-host disease after allogeneic peripheral blood stem cell transplant in patients with hematological malignancies. Giving chemotherapy and total-body irradiation before transplantation helps stop the growth of cancer cells and prevents the patient's immune system from rejecting the donor's stem cells. Healthy stem cells from a donor that are infused into the patient help the patient's bone marrow make blood cells; red blood cells, white blood cells, and platelets. Sometimes, however, the transplanted donor cells can cause an immune response against the body's normal cells, which is called graft-versus-host disease (GVHD). Giving cyclophosphamide after transplant may prevent this from happening or may make chronic GVHD less severe.

Conditions
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Lymphoblastic Leukemia in RemissionAdult Acute Megakaryoblastic Leukemia (M7)Adult Acute Myeloid Leukemia in RemissionAdult Erythroleukemia (M6a)Adult Nasal Type Extranodal NK/T-cell LymphomaAdult Pure Erythroid Leukemia (M6b)Anaplastic Large Cell LymphomaAngioimmunoblastic T-cell LymphomaBlastic Phase Chronic Myelogenous LeukemiaChildhood Acute Erythroleukemia (M6)Childhood Acute Lymphoblastic Leukemia in RemissionChildhood Acute Megakaryocytic Leukemia (M7)Childhood Acute Myeloid Leukemia in RemissionChildhood Burkitt LymphomaChildhood Chronic Myelogenous LeukemiaChildhood Diffuse Large Cell LymphomaChildhood Immunoblastic Large Cell LymphomaChildhood Myelodysplastic SyndromesChildhood Nasal Type Extranodal NK/T-cell LymphomaChronic Myelomonocytic LeukemiaChronic Phase Chronic Myelogenous LeukemiaCutaneous B-cell Non-Hodgkin Lymphomade Novo Myelodysplastic SyndromesExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueHepatosplenic T-cell LymphomaIntraocular LymphomaNodal Marginal Zone B-cell LymphomaNoncutaneous Extranodal LymphomaPeripheral T-cell LymphomaPhiladelphia Chromosome Negative Chronic Myelogenous LeukemiaPost-transplant Lymphoproliferative DisorderPreviously Treated Myelodysplastic SyndromesRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-cell Leukemia/LymphomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Acute Myeloid LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRecurrent/Refractory Childhood Hodgkin LymphomaRelapsing Chronic Myelogenous LeukemiaSecondary Acute Myeloid LeukemiaSecondary Myelodysplastic SyndromesSmall Intestine LymphomaSplenic Marginal Zone LymphomaStage III Multiple MyelomaTesticular LymphomaWaldenström Macroglobulinemia
COMPLETED
A Two-Step Approach to Reduced Intensity Bone Marrow Transplant for Patients With Hematological Malignancies
Description

The purpose of this research study is to compare the survival rates of patients with better risk disease undergoing hematopoietic stem cell transplant (HSCT) to the survival rates reported in the medical literature of similar patients undergoing reduced intensity HSCT from matched related donors.

Conditions
Adult Acute Lymphoblastic Leukemia in RemissionAdult Acute Myeloid Leukemia in RemissionAdult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With Del(5q)Adult Acute Myeloid Leukemia With Inv(16)(p13;q22)Adult Acute Myeloid Leukemia With t(15;17)(q22;q12)Adult Acute Myeloid Leukemia With t(16;16)(p13;q22)Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)Adult Nasal Type Extranodal NK/T-cell LymphomaAplastic AnemiaChildhood Acute Lymphoblastic Leukemia in RemissionChildhood Acute Myeloid Leukemia in RemissionChildhood Myelodysplastic SyndromesChronic Eosinophilic LeukemiaChronic Myelomonocytic LeukemiaChronic Neutrophilic LeukemiaEssential ThrombocythemiaExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueJuvenile Myelomonocytic LeukemiaMastocytosisMyelodysplastic/Myeloproliferative Neoplasm, UnclassifiableNodal Marginal Zone B-cell LymphomaPolycythemia VeraPreviously Treated Myelodysplastic SyndromesPrimary MyelofibrosisRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Acute Myeloid LeukemiaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRecurrent/Refractory Childhood Hodgkin LymphomaRefractory AnemiaRefractory Anemia With Ringed SideroblastsRefractory Hairy Cell LeukemiaRefractory Multiple MyelomaSecondary Myelodysplastic SyndromesSplenic Marginal Zone LymphomaT-cell Large Granular Lymphocyte LeukemiaWaldenström Macroglobulinemia
COMPLETED
Supersaturated Calcium Phosphate Rinse in Preventing Oral Mucositis in Young Patients Undergoing Autologous or Donor Stem Cell Transplant
Description

This randomized phase III trial is studying how well Caphosol rinse works in preventing mucositis in young patients undergoing autologous or donor stem cell transplant. Supersaturated calcium phosphate (Caphosol) rinse may be able to prevent mucositis, or mouth sores, in patients undergoing stem cell transplant.

COMPLETED
Sirolimus, Cyclosporine, and Mycophenolate Mofetil in Preventing Graft-versus-Host Disease in Treating Patients With Blood Cancer Undergoing Donor Peripheral Blood Stem Cell Transplant
Description

This phase II trial studies how well sirolimus, cyclosporine and mycophenolate mofetil works in preventing graft-vs-host disease (GVHD) in patients with blood cancer undergoing donor peripheral blood stem cell (PBSC) transplant. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving total-body irradiation together with sirolimus, cyclosporine, and mycophenolate mofetil before and after transplant may stop this from happening.

COMPLETED
High-Dose Busulfan and High-Dose Cyclophosphamide Followed By Donor Bone Marrow Transplant in Treating Patients With Leukemia, Myelodysplastic Syndrome, Multiple Myeloma, or Recurrent Hodgkin or Non-Hodgkin Lymphoma
Description

RATIONALE: Giving high doses of chemotherapy drugs, such as busulfan and cyclophosphamide, before a donor bone marrow transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving cyclosporine, methylprednisolone, and methotrexate after transplant may stop this from happening. PURPOSE: This clinical trial studies high-dose busulfan and high-dose cyclophosphamide followed by donor bone marrow transplant in treating patients with leukemia, myelodysplastic syndrome, multiple myeloma, or recurrent Hodgkin or Non-Hodgkin lymphoma.

Conditions
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Lymphoblastic Leukemia in RemissionAdult Acute Megakaryoblastic Leukemia (M7)Adult Acute Monoblastic Leukemia (M5a)Adult Acute Monocytic Leukemia (M5b)Adult Acute Myeloblastic Leukemia With Maturation (M2)Adult Acute Myeloblastic Leukemia Without Maturation (M1)Adult Acute Myeloid Leukemia in RemissionAdult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With Del(5q)Adult Acute Myeloid Leukemia With Inv(16)(p13;q22)Adult Acute Myeloid Leukemia With T(15;17)(q22;q12)Adult Acute Myeloid Leukemia With T(16;16)(p13;q22)Adult Acute Myeloid Leukemia With T(8;21)(q22;q22)Adult Acute Myelomonocytic Leukemia (M4)Adult Acute Promyelocytic Leukemia (M3)Adult Erythroleukemia (M6a)Adult Nasal Type Extranodal NK/T-cell LymphomaAdult Pure Erythroid Leukemia (M6b)Anaplastic Large Cell LymphomaAngioimmunoblastic T-cell LymphomaBurkitt LymphomaChildhood Acute Erythroleukemia (M6)Childhood Acute Lymphoblastic Leukemia in RemissionChildhood Acute Megakaryocytic Leukemia (M7)Childhood Acute Monoblastic Leukemia (M5a)Childhood Acute Monocytic Leukemia (M5b)Childhood Acute Myeloblastic Leukemia With Maturation (M2)Childhood Acute Myeloblastic Leukemia Without Maturation (M1)Childhood Acute Myeloid Leukemia in RemissionChildhood Acute Myelomonocytic Leukemia (M4)Childhood Acute Promyelocytic Leukemia (M3)Childhood Chronic Myelogenous LeukemiaChildhood Myelodysplastic SyndromesChronic Phase Chronic Myelogenous LeukemiaCutaneous B-cell Non-Hodgkin LymphomaDe Novo Myelodysplastic SyndromesExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueHepatosplenic T-cell LymphomaIntraocular LymphomaNodal Marginal Zone B-cell LymphomaPeripheral T-Cell LymphomaPost-transplant Lymphoproliferative DisorderPreviously Treated Myelodysplastic SyndromesRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult Non-Hodgkin LymphomaRecurrent Adult T-cell Leukemia/LymphomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Acute Myeloid LeukemiaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRefractory Multiple MyelomaRelapsing Chronic Myelogenous LeukemiaSecondary Myelodysplastic SyndromesSmall Intestine LymphomaSplenic Marginal Zone LymphomaTesticular LymphomaWaldenstrom Macroglobulinemia
COMPLETED
Infusion of Off-the-Shelf Expanded Cord Blood Cells to Augment Cord Blood Transplant in Patients With Hematologic Malignancies
Description

This phase II trial is studying the safety and potential efficacy of infusing non-human leukocyte antigen matched ex vivo expanded cord blood progenitors with one or two unmanipulated umbilical cord blood units for transplantation following conditioning with fludarabine phosphate, cyclophosphamide and total body irradiation, and immunosuppression with cyclosporine and mycophenolate mofetil for patients with hematologic malignancies. Chemotherapy, such as fludarabine phosphate and cyclophosphamide, and total-body irradiation given before an umbilical cord blood transplant stops the growth of leukemia cells and works to prevent the patient's immune system from rejecting the donor's stem cells. The healthy stem cells from the donor's umbilical cord blood help the patient's bone marrow make new red blood cells, white blood cells, and platelets. It may take several weeks for these new blood cells to grow. During that period of time, patients are at increased risk for bleeding and infection. Faster recovery of white blood cells may decrease the number and severity of infections. Studies have shown that counts recover more quickly when more cord blood cells are given with the transplant. We have developed a way of growing or "expanding" the number of cord blood cells in the lab so that there are more cells available for transplant. We are doing this study to find out whether or not giving these expanded cells along with one or two unexpanded cord blood units is safe and if use of expanded cells can decrease the time it takes for white blood cells to recover after transplant. We will study the time it takes for blood counts to recover, which of the two or three cord blood units makes up the patient's new blood system, and how quickly immune system cells return.

COMPLETED
Donor Umbilical Cord Blood Stem Cell Transplant in Treating Patients With Hematologic Malignancies
Description

RATIONALE: Giving chemotherapy before a donor umbilical cord blood transplant (UCBT) helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the stem cells from an unrelated donor, that do not exactly match the patient's blood, are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving antithymocyte globulin before transplant and cyclosporine and mycophenolate mofetil after transplant may stop this from happening. PURPOSE: This phase II trial is studying how well donor umbilical cord blood stem cell transplant works in treating patients with hematologic malignancies.

Conditions
Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic SyndromeAdult Acute Lymphoblastic Leukemia in RemissionAdult Acute Megakaryoblastic Leukemia (M7)Adult Acute Minimally Differentiated Myeloid Leukemia (M0)Adult Acute Monoblastic Leukemia (M5a)Adult Acute Monocytic Leukemia (M5b)Adult Acute Myeloid Leukemia in RemissionAdult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With t(16;16)(p13;q22)Adult Erythroleukemia (M6a)Adult Nasal Type Extranodal NK/T-cell LymphomaAdult Pure Erythroid Leukemia (M6b)B-cell Adult Acute Lymphoblastic LeukemiaB-cell Childhood Acute Lymphoblastic LeukemiaBlastic Phase Chronic Myelogenous LeukemiaBurkitt LymphomaChildhood Acute Erythroleukemia (M6)Childhood Acute Lymphoblastic Leukemia in RemissionChildhood Acute Megakaryocytic Leukemia (M7)Childhood Acute Minimally Differentiated Myeloid Leukemia (M0)Childhood Acute Monoblastic Leukemia (M5a)Childhood Acute Monocytic Leukemia (M5b)Childhood Acute Myeloid Leukemia in RemissionChildhood Chronic Myelogenous LeukemiaChildhood Diffuse Large Cell LymphomaChildhood Immunoblastic Large Cell LymphomaChildhood Myelodysplastic SyndromesChildhood Nasal Type Extranodal NK/T-cell LymphomaChronic Myelomonocytic LeukemiaChronic Phase Chronic Myelogenous LeukemiaCutaneous B-cell Non-Hodgkin Lymphomade Novo Myelodysplastic SyndromesExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueJuvenile Myelomonocytic LeukemiaMyelodysplastic/Myeloproliferative Neoplasm, UnclassifiableNodal Marginal Zone B-cell LymphomaPreviously Treated Myelodysplastic SyndromesProlymphocytic LeukemiaRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Acute Myeloid LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRefractory Chronic Lymphocytic LeukemiaRelapsing Chronic Myelogenous LeukemiaSecondary Acute Myeloid LeukemiaSecondary Myelodysplastic SyndromesSecondary MyelofibrosisSplenic Marginal Zone LymphomaStage I Chronic Lymphocytic LeukemiaStage II Chronic Lymphocytic LeukemiaStage III Chronic Lymphocytic LeukemiaStage IV Chronic Lymphocytic LeukemiaT-cell Adult Acute Lymphoblastic LeukemiaT-cell Childhood Acute Lymphoblastic LeukemiaT-cell Large Granular Lymphocyte LeukemiaWaldenstrom Macroglobulinemia
COMPLETED
Massage Therapy Given by Caregiver in Treating Quality of Life of Young Patients Undergoing Treatment for Cancer
Description

This clinical trial studies massage therapy given by caregiver in treating quality of life of young patients undergoing treatment for cancer. Massage therapy given by a caregiver may improve the quality of life of young patients undergoing treatment for cancer

Conditions
Accelerated Phase Chronic Myelogenous LeukemiaAcute Undifferentiated LeukemiaAngioimmunoblastic T-cell LymphomaAtypical Chronic Myeloid Leukemia, BCR-ABL1 NegativeBlastic Phase Chronic Myelogenous LeukemiaBurkitt LymphomaChildhood Acute Lymphoblastic Leukemia in RemissionChildhood Acute Myeloid Leukemia in RemissionChildhood Chronic Myelogenous LeukemiaChildhood Diffuse Large Cell LymphomaChildhood Grade III Lymphomatoid GranulomatosisChildhood Immunoblastic Large Cell LymphomaChildhood Myelodysplastic SyndromesChildhood Nasal Type Extranodal NK/T-cell LymphomaChronic Eosinophilic LeukemiaChronic Myelomonocytic LeukemiaChronic Neutrophilic LeukemiaChronic Phase Chronic Myelogenous LeukemiaContiguous Stage II Mantle Cell LymphomaCutaneous B-cell Non-Hodgkin LymphomaEssential ThrombocythemiaExtramedullary PlasmacytomaIntraocular LymphomaIsolated Plasmacytoma of BoneJuvenile Myelomonocytic LeukemiaMast Cell LeukemiaMeningeal Chronic Myelogenous LeukemiaNoncontiguous Stage II Mantle Cell LymphomaPolycythemia VeraPost-transplant Lymphoproliferative DisorderPrimary MyelofibrosisPrimary Systemic AmyloidosisProgressive Hairy Cell Leukemia, Initial TreatmentProlymphocytic LeukemiaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Acute Myeloid LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent/Refractory Childhood Hodgkin LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Hairy Cell LeukemiaRefractory Multiple MyelomaRelapsing Chronic Myelogenous LeukemiaSecondary Acute Myeloid LeukemiaStage 0 Chronic Lymphocytic LeukemiaStage I Childhood Anaplastic Large Cell LymphomaStage I Childhood Hodgkin LymphomaStage I Childhood Large Cell LymphomaStage I Childhood Lymphoblastic LymphomaStage I Childhood Small Noncleaved Cell LymphomaStage I Chronic Lymphocytic LeukemiaStage I Cutaneous T-cell Non-Hodgkin LymphomaStage I Multiple MyelomaStage I Mycosis Fungoides/Sezary SyndromeStage II Childhood Anaplastic Large Cell LymphomaStage II Childhood Hodgkin LymphomaStage II Childhood Large Cell LymphomaStage II Childhood Lymphoblastic LymphomaStage II Childhood Small Noncleaved Cell LymphomaStage II Chronic Lymphocytic LeukemiaStage II Cutaneous T-cell Non-Hodgkin LymphomaStage II Multiple MyelomaStage II Mycosis Fungoides/Sezary SyndromeStage III Childhood Anaplastic Large Cell LymphomaStage III Childhood Hodgkin LymphomaStage III Childhood Large Cell LymphomaStage III Childhood Lymphoblastic LymphomaStage III Childhood Small Noncleaved Cell LymphomaStage III Chronic Lymphocytic LeukemiaStage III Cutaneous T-cell Non-Hodgkin LymphomaStage III Multiple MyelomaStage III Mycosis Fungoides/Sezary SyndromeStage IV Childhood Anaplastic Large Cell LymphomaStage IV Childhood Hodgkin LymphomaStage IV Childhood Large Cell LymphomaStage IV Childhood Lymphoblastic LymphomaStage IV Childhood Small Noncleaved Cell LymphomaStage IV Chronic Lymphocytic LeukemiaStage IV Cutaneous T-cell Non-Hodgkin LymphomaStage IV Mycosis Fungoides/Sezary SyndromeT-cell Large Granular Lymphocyte LeukemiaUnspecified Childhood Solid Tumor, Protocol Specific
COMPLETED
Methemoglobinemia in Young Patients With Hematologic Cancer or Aplastic Anemia Treated With Dapsone
Description

RATIONALE: Gathering information about how often methemoglobinemia occurs in young patients receiving dapsone for hematologic cancer or aplastic anemia may help doctors learn more about the disease and plan the best treatment. PURPOSE: This research study is looking at methemoglobinemia in young patients with hematologic cancer or aplastic anemia treated with dapsone.

WITHDRAWN
Recombinant Human Mannose-Binding Lectin (MBL) in Treating Young Patients With MBL Deficiency and Fever and Neutropenia
Description

RATIONALE: Recombinant human mannose-binding lectin (MBL) may be effective in preventing infection in young patients with fever and neutropenia receiving chemotherapy for blood disease or cancer. PURPOSE: This phase I trial is studying the side effects and best dose of recombinant human mannose-binding lectin in treating young patients with MBL deficiency and fever and neutropenia.

COMPLETED
Fludarabine Phosphate, Melphalan, Total-Body Irradiation, Donor Stem Cell Transplant in Treating Patients With Hematologic Cancer or Bone Marrow Failure Disorders
Description

This clinical trial is studying how well giving fludarabine phosphate and melphalan together with total-body irradiation followed by donor stem cell transplant works in treating patients with hematologic cancer or bone marrow failure disorders. Giving low doses of chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells or abnormal cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer or abnormal cells (graft-versus-tumor effect)

Conditions
Accelerated Phase Chronic Myelogenous LeukemiaAcute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic SyndromeAdult Acute Lymphoblastic Leukemia in RemissionAdult Acute Myeloid Leukemia in RemissionAdult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With Del(5q)Adult Acute Myeloid Leukemia With Inv(16)(p13;q22)Adult Acute Myeloid Leukemia With t(15;17)(q22;q12)Adult Acute Myeloid Leukemia With t(16;16)(p13;q22)Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)Adult Nasal Type Extranodal NK/T-cell LymphomaAnaplastic Large Cell LymphomaAngioimmunoblastic T-cell LymphomaAplastic AnemiaAtypical Chronic Myeloid Leukemia, BCR-ABL1 NegativeChildhood Acute Lymphoblastic Leukemia in RemissionChildhood Acute Myeloid Leukemia in RemissionChildhood Chronic Myelogenous LeukemiaChildhood Diffuse Large Cell LymphomaChildhood Immunoblastic Large Cell LymphomaChildhood Myelodysplastic SyndromesChildhood Nasal Type Extranodal NK/T-cell LymphomaChronic Eosinophilic LeukemiaChronic Myelomonocytic LeukemiaChronic Neutrophilic LeukemiaChronic Phase Chronic Myelogenous Leukemiade Novo Myelodysplastic SyndromesExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueFanconi AnemiaJuvenile Myelomonocytic LeukemiaMyelodysplastic/Myeloproliferative Neoplasm, UnclassifiableNodal Marginal Zone B-cell LymphomaNoncontiguous Stage II Adult Burkitt LymphomaNoncontiguous Stage II Adult Diffuse Large Cell LymphomaNoncontiguous Stage II Adult Diffuse Mixed Cell LymphomaNoncontiguous Stage II Adult Diffuse Small Cleaved Cell LymphomaNoncontiguous Stage II Adult Immunoblastic Large Cell LymphomaNoncontiguous Stage II Adult Lymphoblastic LymphomaNoncontiguous Stage II Grade 1 Follicular LymphomaNoncontiguous Stage II Grade 2 Follicular LymphomaNoncontiguous Stage II Grade 3 Follicular LymphomaNoncontiguous Stage II Mantle Cell LymphomaNoncontiguous Stage II Marginal Zone LymphomaNoncontiguous Stage II Small Lymphocytic LymphomaParoxysmal Nocturnal HemoglobinuriaPreviously Treated Myelodysplastic SyndromesPrimary MyelofibrosisRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-cell Leukemia/LymphomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Acute Myeloid LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRecurrent/Refractory Childhood Hodgkin LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Multiple MyelomaRelapsing Chronic Myelogenous LeukemiaSecondary Acute Myeloid LeukemiaSecondary Myelodysplastic SyndromesSplenic Marginal Zone LymphomaStage III Adult Diffuse Small Cleaved Cell LymphomaStage III Adult Immunoblastic Large Cell LymphomaStage III Adult Lymphoblastic LymphomaStage III Grade 1 Follicular LymphomaStage III Grade 2 Follicular LymphomaStage III Grade 3 Follicular LymphomaStage III Mantle Cell LymphomaStage III Marginal Zone LymphomaStage III Small Lymphocytic LymphomaStage IV Adult Burkitt LymphomaStage IV Adult Diffuse Small Cleaved Cell LymphomaStage IV Adult Immunoblastic Large Cell LymphomaStage IV Adult Lymphoblastic LymphomaStage IV Grade 1 Follicular LymphomaStage IV Grade 2 Follicular LymphomaStage IV Grade 3 Follicular LymphomaStage IV Mantle Cell LymphomaStage IV Marginal Zone LymphomaStage IV Small Lymphocytic LymphomaWaldenström Macroglobulinemia
COMPLETED
Ondansetron in Preventing Nausea and Vomiting in Patients Undergoing Stem Cell Transplant
Description

RATIONALE: Ondansetron may help lessen or prevent nausea and vomiting in patients undergoing stem cell transplant. PURPOSE: This phase II trial is studying how well ondansetron works in preventing nausea and vomiting in patients undergoing stem cell transplant.

Conditions
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Lymphoblastic Leukemia in RemissionAdult Acute Myeloid Leukemia in RemissionAdult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With Inv(16)(p13;q22)Adult Acute Myeloid Leukemia With t(15;17)(q22;q12)Adult Acute Myeloid Leukemia With t(16;16)(p13;q22)Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)Atypical Chronic Myeloid Leukemia, BCR-ABL NegativeBlastic Phase Chronic Myelogenous LeukemiaChronic Eosinophilic LeukemiaChronic Myelomonocytic LeukemiaChronic Neutrophilic LeukemiaChronic Phase Chronic Myelogenous Leukemiade Novo Myelodysplastic SyndromesDisseminated NeuroblastomaExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueMyelodysplastic/Myeloproliferative Neoplasm, UnclassifiableNodal Marginal Zone B-cell LymphomaNoncontiguous Stage II Adult Burkitt LymphomaNoncontiguous Stage II Adult Diffuse Large Cell LymphomaNoncontiguous Stage II Adult Diffuse Mixed Cell LymphomaNoncontiguous Stage II Adult Diffuse Small Cleaved Cell LymphomaNoncontiguous Stage II Adult Immunoblastic Large Cell LymphomaNoncontiguous Stage II Adult Lymphoblastic LymphomaNoncontiguous Stage II Grade 1 Follicular LymphomaNoncontiguous Stage II Grade 2 Follicular LymphomaNoncontiguous Stage II Grade 3 Follicular LymphomaNoncontiguous Stage II Mantle Cell LymphomaNoncontiguous Stage II Marginal Zone LymphomaNoncontiguous Stage II Small Lymphocytic LymphomaPoor Prognosis Metastatic Gestational Trophoblastic TumorPreviously Treated Myelodysplastic SyndromesPrimary MyelofibrosisRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Malignant Testicular Germ Cell TumorRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent NeuroblastomaRecurrent Ovarian Epithelial CancerRecurrent Ovarian Germ Cell TumorRecurrent Small Lymphocytic LymphomaRecurrent/Refractory Childhood Hodgkin LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Hairy Cell LeukemiaRelapsing Chronic Myelogenous LeukemiaSecondary Acute Myeloid LeukemiaSecondary Myelodysplastic SyndromesSplenic Marginal Zone LymphomaStage I Multiple MyelomaStage II Multiple MyelomaStage II Ovarian Epithelial CancerStage III Adult Burkitt LymphomaStage III Adult Diffuse Large Cell LymphomaStage III Adult Diffuse Mixed Cell LymphomaStage III Adult Diffuse Small Cleaved Cell LymphomaStage III Adult Hodgkin LymphomaStage III Adult Immunoblastic Large Cell LymphomaStage III Adult Lymphoblastic LymphomaStage III Chronic Lymphocytic LeukemiaStage III Grade 1 Follicular LymphomaStage III Grade 2 Follicular LymphomaStage III Grade 3 Follicular LymphomaStage III Malignant Testicular Germ Cell TumorStage III Mantle Cell LymphomaStage III Marginal Zone LymphomaStage III Multiple MyelomaStage III Ovarian Epithelial CancerStage III Small Lymphocytic LymphomaStage IIIA Breast CancerStage IIIB Breast CancerStage IIIC Breast CancerStage IV Adult Burkitt LymphomaStage IV Adult Diffuse Large Cell LymphomaStage IV Adult Diffuse Mixed Cell LymphomaStage IV Adult Diffuse Small Cleaved Cell LymphomaStage IV Adult Hodgkin LymphomaStage IV Adult Immunoblastic Large Cell LymphomaStage IV Adult Lymphoblastic LymphomaStage IV Breast CancerStage IV Chronic Lymphocytic LeukemiaStage IV Grade 1 Follicular LymphomaStage IV Grade 2 Follicular LymphomaStage IV Grade 3 Follicular LymphomaStage IV Mantle Cell LymphomaStage IV Marginal Zone LymphomaStage IV Ovarian Epithelial CancerStage IV Small Lymphocytic Lymphoma
COMPLETED
A Web-Based Stem Cell Transplant Support System or Standard Care in Young Patients Undergoing Stem Cell Transplant and Their Families
Description

RATIONALE: A Web site for stem cell transplant health information and support may be effective in helping parents improve their health-related knowledge, skills, and quality of life, which may also improve their children's quality of life. PURPOSE: This randomized phase III trial is studying a Web-based stem cell transplant support system to see how well it works compared with standard care in families of young patients undergoing a stem cell transplant.

TERMINATED
Donor Umbilical Cord Blood Transplant in Treating Patients With Advanced Hematological Cancer or Other Disease
Description

RATIONALE: Giving low doses of chemotherapy and total-body irradiation before a donor umbilical cord blood transplant helps stop the growth of cancer or abnormal cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil before and after transplant may stop this from happening. PURPOSE: This phase II trial is studying how well donor umbilical cord blood transplant with reduced intensity conditioning works in treating patients with advanced hematological cancer or other disease.