8 Clinical Trials for Various Conditions
This phase I trial studies the side effects and best dose of cord blood-derived expanded allogeneic natural killer cells (donor natural killer \[NK\] cells) and how well they work when given together with cyclophosphamide and etoposide in treating children and young adults with solid tumors that have come back (relapsed) or that do not respond to treatment (refractory). NK cells, white blood cells important to the immune system, are donated/collected from cord blood collected at birth from healthy babies and grown in the lab. Drugs used in chemotherapy, such as cyclophosphamide and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving NK cells together with cyclophosphamide and etoposide may work better in treating children and young adults with solid tumors.
Open-label, Phase I-II, first-in-human (FIH) study for A166 monotherapy in HER2-expressing or amplified patients who progressed on or did not respond to available standard therapies. Patients must have documented HER2 expression or amplification. The patient must have exhausted available standard therapies. Patients will receive study drug as a single IV infusion. Cycles will continue until disease progression or unacceptable toxicity.
This phase II trial studies how well cobimetinib and atezolizumab work in treating participants with rare tumors that have spread to other places in the body (advanced) or that does not respond to treatment (refractory). Cobimetinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving cobimetinib and atezolizumab may work better in treating participants with advanced or refractory rare tumors.
This phase II trial studies how well talimogene laherparepvec and nivolumab work in treating patients with lymphomas that do not responded to treatment (refractory) or non-melanoma skin cancers that have spread to other places in the body (advanced) or do not responded to treatment. Biological therapies, such as talimogene laherparepvec, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop tumor cells from growing. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving talimogene laherparepvec and nivolumab may work better compared to usual treatments in treating patients with lymphomas or non-melanoma skin cancers.
Background: * Human peripheral blood lymphocytes have been engineered to express a T-cell receptor (TCR) that recognizes a blood type, human leukocyte antigen (HLA-A\*0201) derived from the gp100 protein. A retroviral vector was constructed that can deliver the TCR to cells. * This gene-engineered cell is over 10 times more reactive with melanoma cells than is the melanoma antigen recognized by T-cells (MART-1) TCR that resulted in tumor shrinkage for two patients with metastatic melanoma. Objectives: * To determine whether an anti-melanoma protein receptor can be put in cells removed from patients' tumors or blood and then reinfused, with the purpose of shrinking tumors. * To evaluate safety and effectiveness of the treatment. Eligibility: * Patients 18 years of age or older with metastatic cancer melanoma (cancer that has spread beyond the original site). * Patient's leukocyte antigen type is HLA-A\*0201. Design: -Patients undergo the following procedures: * Leukapheresis (on two occasions). This is a method of collecting large numbers of white blood cells. The cells obtained in the first leukapheresis procedure are grown in the laboratory, and the anti-gp100 protein is inserted into the cells using an inactivated (harmless) virus in a process called retroviral transduction. Cells collected in the second leukapheresis procedure are used to evaluate the effectiveness of the study treatment. * Chemotherapy. Patients are given chemotherapy through a vein (intravenously, IV) over 1 hour for 2 days to suppress the immune system so that the patient's immune cells do not interfere with the treatment. * Treatment with anti-gp100. Patients receive an IV infusion of the treated cells containing anti-gp100 protein, followed by infusions of a drug called IL-2 (aldesleukin), which helps boost the effectiveness of the treated white cells. * Patients are given support medications to prevent complications such as infections. * Patients may undergo a tumor biopsy (removal of a small piece of tumor tissue). * Patients are evaluated with laboratory tests and imaging tests, such as CT scans, 4 to 6 weeks after treatment and then once a month for 3 to 4 months to determine the response to treatment. * Patients have blood tests at 3, 6, and 12 months and then annually for 5 years.
Background: * Human peripheral blood lymphocytes have been engineered to express a T-cell receptor (TCR) that recognizes a blood type,HLA-A 0201 (human leukocyte antigen) derived from the gp100 protein. A retroviral vector was constructed that can deliver the T-cell receptor (TCR) to cells. * Patients' cells will be converted into cells able to recognize and fight melanoma tumors. Objectives: * To determine whether TCR-engineered lymphocytes can be put in cells removed from patients' tumors or blood and then reinfused, with the purpose of shrinking tumors. * To evaluate safety and effectiveness of the treatment. Eligibility: * Patients 18 years of age or older with metastatic cancer melanoma (cancer that has spread beyond the original site). * Patient's leukocyte antigen type is HLA-A 0201. Design: -Patients undergo the following procedures: * Leukapheresis (on two occasions). This is a method of collecting large numbers of white blood cells. The cells obtained in the first leukapheresis procedure are grown in the laboratory, and the anti-MART-1 protein is inserted into the cells using an inactivated (harmless) virus in a process called retroviral transduction. Cells collected in the second leukapheresis procedure are used to evaluate the effectiveness of the study treatment. * Chemotherapy. Patients are given chemotherapy through a vein (intravenously, IV) over 1 hour for 2 days to suppress the immune system so that the patient's immune cells do not interfere with the treatment. * Treatment with anti-melanoma antigen recognized by T-cells (MART)-1. Patients receive an intravenous (IV) infusion of the treated cells containing anti-MART-1 protein, followed by infusions of a drug called IL-2 (aldesleukin), which helps boost the effectiveness of the treated white cells. * Patients are given support medications to prevent complications such as infections. * Patients may undergo a tumor biopsy (removal of a small piece of tumor tissue). * Patients are evaluated with laboratory tests and imaging tests, such as CT (computed tomography) scans, 4 to 6 weeks after treatment and then once a month for 3 to 4 months to determine the response to treatment. * Patients have blood tests at 3, 6, and 12 months and then annually for 5 years.
The therapy of solid tumors has been revolutionized by immune therapy, in particular, approaches that activate immune T cells in a polyclonal manner through blockade of checkpoint pathways such as PD-1 by administration of monoclonal antibodies. In this study, the investigators will evaluate the adoptive transfer of RAPA-201 cells, which are checkpoint-deficient polyclonal T cells that represent an analogous yet distinct immune therapy treatment platform for solid tumors. The administration of polyclonal, metabolically-fit RAPA-201 cells is a novel adoptive T cell therapy approach that is suitable for regenerative medicine efforts. RAPA-201 is a novel immunotherapy product consisting of reprogrammed autologous CD4+ and CD8+ T cells of Th1/Tc1 cytokine phenotype. RAPA-201, which have acquired resistance to the mTOR inhibitor temsirolimus, are manufactured ex vivo from peripheral blood mononuclear cells collected from solid tumor patients using a steady-state apheresis. The novel RAPA-201 manufacturing platform, which incorporates both an mTOR inhibitor (temsirolimus) and an anti-cancer Th1/Tc1 polarizing agent (IFN-alpha) generates polyclonal T cells with five key characteristics: 1. Th1/Tc1: polarization to anti-cancer Th1 and Tc1 subsets, with commensurate down-regulation of immune suppressive Th2 and regulatory T (TREG) subsets; 2. T Central Memory: expression of a T central memory (TCM) phenotype, which promotes T cell engraftment and persistence for prolonged anti-tumor effects; 3. Rapamycin-Resistance: acquisition of rapamycin-resistance, which translates into a multi-faceted anti-apoptotic phenotype that improves T cell fitness in the stringent conditions of the tumor microenvironment; 4. T Cell Quiescence: reduced T cell activation, as evidence by reduced expression of the IL-2 receptor CD25, which reduces T cell-mediated cytokine toxicities such as cytokine-release syndrome (CRS) that limit other forms of T cell therapy; and 5. Reduced Checkpoints: multiple checkpoint inhibitory receptors are markedly reduced on RAPA-201 cells (including but not limited to PD-1, CTLA4, TIM-3, LAG3, and LAIR1), which increases T cell immunity in the checkpoint-replete, immune suppressive tumor microenvironment. This is a non-randomized, open label, multi-site, phase I/II trial of outpatient RAPA-201 immune T cell therapy in patients with advanced metastatic, recurrent, and unresectable solid tumors that have recurred or relapsed after prior immune therapy. Patients must have tumor relapse after at least one prior line of therapy and must have refractory status to the most recent regimen, which must include an anti-PD-(L)1 monoclonal antibody. Furthermore, accrual focuses upon solid tumor disease types potentially amenable to standard-of-care salvage chemotherapy consisting of the carboplatin + paclitaxel (CP) regimen that will be utilized for host conditioning prior to RAPA-201 therapy. Importantly, carboplatin and paclitaxel are "immunogenic" chemotherapy agents whereby the resultant cancer cell death mechanism is favorable for generation of anti-tumor immune T cell responses. Thus, the CP regimen that this protocol incorporates is intended to directly control tumor progression and indirectly promote anti-tumor T cell immunity. Protocol therapy consists of six cycles of standard-of-care chemotherapy (carboplatin + paclitaxel (CP) regimen) administered in the outpatient setting every 28 days (chemotherapy administered on cycles day 1, 8, and 15). RAPA-201 cells will be administered at a target flat dose of 400 X 10\^6 cells per infusion on day 3 of cycles 2 through 6. In the original protocol design, a sample size of up to 22 patients was selected to determine whether RAPA-201 therapy, when used in combination with the CP regimen, represents an active regimen in solid tumors that are resistant to anti-PD(L)-1 checkpoint inhibitor therapy, as defined by a response rate (≥ PR) consistent with a rate of 35%. The first stage of protocol accrual consisted of n=10 patients; to advance to the second protocol accrual stage (accrual of an additional n=12 patients), RAPA-201 therapy must result in a tumor response (≥ PR) in at least 2 out of the 10 initial patients. As described below in the detailed description, this original protocol implementation demonstrated that RAPA-201 represented an active treatment regimen for solid tumor patients, and as such, the protocol was expanded to evaluate the combination of RAPA-201 therapy followed by anti-PD1 maintenance therapy.
The purpose of this study is to determine whether HF10 is safe and effective in the treatment of head and neck cancer or solid tumors with cutaneous and/or superficial lesions.