Treatment Trials

222 Clinical Trials for Various Conditions

Focus your search

SUSPENDED
Axatilimab with or Without Azacitidine for the Treatment of Patients with Advanced Phase Myeloproliferative Neoplasms, Myeloproliferative Neoplasm/Myelodysplastic Syndrome Overlap or High Risk Chronic Myelomonocytic Leukemia
Description

This phase Ib/II trial tests the best dose of axatilimab and effectiveness of axatilimab with or without azacitidine for the treatment of patients with advanced phase myeloproliferative neoplasms (MPN), myeloproliferative neoplasm/myelodysplastic syndrome (MPN/MDS) overlap or high risk chronic myelomonocytic leukemia (CMML). Axatilimab is an antibody that is cloned from a single white blood cell that is known to be able to recognize cancer cells and block a protein on the surface of the white blood cells that may be involved in cancer cell growth. By blocking the proteins, this may slow or halt the growth of the cancer. Azacitidine is in a class of medications called antimetabolites. It works by stopping or slowing the growth of cancer cells. Giving axatilimab with or without azacitidine may be safe and effective in treating patients with advanced phase MPN, MPN/MDS overlap or high risk CMML.

RECRUITING
Azacitidine, Venetoclax, and Gilteritinib in Treating Patients With Recurrent/Refractory FLT3-Mutated Acute Myeloid Leukemia, Chronic Myelomonocytic Leukemia, or High-Risk Myelodysplastic Syndrome/Myeloproliferative Neoplasm
Description

This phase I/II trial studies the side effects and best dose of gilteritinib and to see how well it works in combination with azacitidine and venetoclax in treating patients with FLT3-mutation positive acute myeloid leukemia, chronic myelomonocytic leukemia, or high-risk myelodysplastic syndrome/myeloproliferative neoplasm that has come back (recurrent) or has not responded to treatment (refractory). Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Venetoclax may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Gilteritinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving azacitidine, venetoclax, and gilteritinib may work better compared to azacitidine and venetoclax alone in treating patients with acute myeloid leukemia, chronic myelomonocytic leukemia, or myelodysplastic syndrome/myeloproliferative neoplasm.

TERMINATED
Serial Measurements of Molecular and Architectural Responses to Therapy (SMMART) PRIME Trial
Description

This phase Ib trial determines if samples from a patient's cancer can be tested to find combinations of drugs that provide clinical benefit for the kind of cancer the patient has. This study is also being done to understand why cancer drugs can stop working and how different cancers in different people respond to different types of therapy.

Conditions
Accelerated Phase Chronic Myelogenous Leukemia, BCR-ABL1 PositiveAnatomic Stage IV Breast Cancer AJCC v8AnemiaAnn Arbor Stage III Hodgkin LymphomaAnn Arbor Stage III Non-Hodgkin LymphomaAnn Arbor Stage IV Hodgkin LymphomaAnn Arbor Stage IV Non-Hodgkin LymphomaAtypical Chronic Myeloid Leukemia, BCR-ABL1 NegativeBlast Phase Chronic Myelogenous Leukemia, BCR-ABL1 PositiveCastration-Resistant Prostate CarcinomaChronic Phase Chronic Myelogenous Leukemia, BCR-ABL1 PositiveHematopoietic and Lymphoid System NeoplasmLocally Advanced Pancreatic AdenocarcinomaMetastatic Breast CarcinomaMetastatic Malignant Solid NeoplasmMetastatic Pancreatic AdenocarcinomaMyelodysplastic/Myeloproliferative Neoplasm With Ring Sideroblasts and ThrombocytosisMyelodysplastic/Myeloproliferative Neoplasm, UnclassifiablePrimary MyelofibrosisRecurrent Acute Lymphoblastic LeukemiaRecurrent Acute Myeloid LeukemiaRecurrent Chronic Lymphocytic LeukemiaRecurrent Chronic Myelogenous Leukemia, BCR-ABL1 PositiveRecurrent Hematologic MalignancyRecurrent Hodgkin LymphomaRecurrent Myelodysplastic SyndromeRecurrent Myelodysplastic/Myeloproliferative NeoplasmRecurrent Myeloproliferative NeoplasmRecurrent Non-Hodgkin LymphomaRecurrent Plasma Cell MyelomaRecurrent Small Lymphocytic LymphomaRefractory Acute Lymphoblastic LeukemiaRefractory Acute Myeloid LeukemiaRefractory Chronic Lymphocytic LeukemiaRefractory Chronic Myelogenous Leukemia, BCR-ABL1 PositiveRefractory Chronic Myelomonocytic LeukemiaRefractory Hematologic MalignancyRefractory Hodgkin LymphomaRefractory Malignant Solid NeoplasmRefractory Myelodysplastic SyndromeRefractory Myelodysplastic/Myeloproliferative NeoplasmRefractory Non-Hodgkin LymphomaRefractory Plasma Cell MyelomaRefractory Primary MyelofibrosisRefractory Small Lymphocytic LymphomaStage II Pancreatic Cancer AJCC v8Stage III Pancreatic Cancer AJCC v8Stage IV Pancreatic Cancer AJCC v8Stage IV Prostate Cancer AJCC v8Unresectable Pancreatic Adenocarcinoma
RECRUITING
Study of Oral Administration of LP-118 in Patients With Relapsed or Refractory CLL, SLL, MDS, MDS/MPN, AML, CMML-2, MPN-BP, ALL, MF, NHL, RT, MM or T-PLL.
Description

This is a Phase 1, multi-center, open-label study with a dose-escalation phase (Phase 1a) and a cohort expansion phase (Phase 1b), to evaluate the safety, tolerability, and PK profile of LP-118 under a once daily oral dosing schedule in up to 100 subjects.

TERMINATED
A Study of TAS1553 in Subjects With Relapsed or Refractory Acute Myeloid Leukemia (AML) and Other Myeloid Neoplasms
Description

This is a Phase 1, 2-part, open-label, multicenter, first-in-human (FIH) study to assess the safety, pharmacokinetics (PK), pharmacodynamics (PD), and preliminary clinical activity of TAS1553 administered orally to participants ≥18 years of age with relapsed or refractory (R/R) acute myeloid leukemia (AML) or other myeloid neoplasms where approved therapies have failed or for whom known life-prolonging therapies are not available. The AML population includes de novo AML, secondary AML, and myelodysplastic syndrome (MDS)-transformed into AML. Other myeloid neoplasms include accelerated phase myeloproliferative neoplasms (MPN), and chronic or accelerated phase MPN-unclassifiable (MPN-U) and MDS-MPN. Blast crisis phase of MPNs are considered secondary AML and will be included in the AML cohort. Part 1 is a multicenter, sequential group treatment feasibility study with 1 treatment arm and no masking (dose escalation). Part 2 is a multicenter, two-stage, multiple group, dose confirmation study with 1 treatment arm and no masking (exploratory dose expansion).

ACTIVE_NOT_RECRUITING
Ivosidenib and Combination Chemotherapy for the Treatment of IDH1 Mutant Relapsed or Refractory Acute Myeloid Leukemia
Description

This phase I trial studies the side effects and best dose of ivosidenib when given together with combination chemotherapy for the treatment of 1DH1 mutant acute myeloid leukemia that has come back (relapsed) or does not respond to treatment (refractory). Ivosidenib may stop the growth of cancer cells by blocking the IDH1 mutation and some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as fludarabine phosphate, cytarabine, and filgrastim, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ivosidenib with combination chemotherapy may work better in treating patients with acute myeloid leukemia compared to chemotherapy alone.

TERMINATED
EphB4-HSA Fusion Protein and Cytarabine /or Liposomal Vincristine in Patients With Recurrent or Refractory Acute Leukemia
Description

This phase I trial studies the side effects and best dose of recombinant EphB4-HSA fusion protein when given together with cytarabine or vincristine liposomal in treating participants with acute leukemia that has come back or has not responded to treatment. Drugs used in chemotherapy, such as recombinant ephb4-HSA fusion protein, cytarabine, and vincristine liposomal, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving the drugs in different combinations may kill more cancer cells.

ACTIVE_NOT_RECRUITING
Study of IMGN632 in Patients With Untreated BPDCN and Relapsed/Refractory BPDCN
Description

This is an open-label, multi-center, Phase 1/2 study to determine the MTD and assess the safety, tolerability, PK, immunogenicity, and anti-leukemia activity of IMGN632 when administered as monotherapy to patients with CD123+ disease.

COMPLETED
Ruxolitinib Phosphate and Decitabine in Treating Patients With Relapsed or Refractory or Post Myeloproliferative Acute Myeloid Leukemia
Description

This phase I/II trial studies the side effects and best dose of ruxolitinib phosphate when given together with decitabine and to see how well they work in treating patients with acute myeloid leukemia that has come back or is not responding to treatment, or has developed from a type of bone marrow diseases called myeloproliferative neoplasms. Ruxolitinib phosphate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ruxolitinib phosphate together with decitabine may be an effective treatment for acute myeloid leukemia.

COMPLETED
Treatment for Relapsed/Refractory AML Based on a High Throughput Drug Sensitivity Assay
Description

This clinical trial uses a laboratory test called a high throughput sensitivity assay in planning treatment for patients with relapsed or refractory acute myeloid leukemia. The aim is to try to identify drugs that may be effective in killing leukemia cells for those patients who will not be cured with conventional chemotherapy. This assay will test multiple drugs simultaneously against a patient's own donated blood sample. The goal is to use this laboratory assay to best match a drug to a patient's disease.

TERMINATED
HSP90 Inhibitor, AUY922, in Patients With Primary Myelofibrosis (PMF), Post-Polycythemia Vera Myelofibrosis (Post-PV MF), Post-Essential Thrombocythemia Myelofibrosis (Post-ET MF), and Refractory PV/ET
Description

The purpose of this study is to test a new drug called AUY922. AUY922 is not FDA-approved. AUY922 is a new kind of drug that attacks a protein called HSP90. HSP90 is found in both normal and cancer cells, but the investigators think it is more important in cancer cells. This study will see if AUY922 helps people with myelofibrosis, essential thrombocythemia and polycythemia vera. This study will also see if AUY922 is safe in people with myelofibrosis, essential thrombocythemia and polycythemia vera. It will find out what effects, good and/or bad, AUY922 has on the patient and the disease. The researchers hope that this study will help them to find better treatments for primary myelofibrosis, essential thrombocythemia and polycythemia vera.

COMPLETED
INCB18424 in Treating Young Patients With Relapsed or Refractory Solid Tumor, Leukemia, or Myeloproliferative Disease
Description

RATIONALE: INCB18424 (Ruxolitinib) may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase 1 clinical trial is studying the side effects and best dose of INCB18424 in treating young patients with relapsed or refractory solid tumor, leukemia, or myeloproliferative disease.

COMPLETED
Clofarabine, Cytarabine, and Filgrastim in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia, Advanced Myelodysplastic Syndrome, and/or Advanced Myeloproliferative Neoplasm
Description

This phase II trial is studying how well giving clofarabine and cytarabine together with filgrastim works in treating patients with newly diagnosed acute myeloid leukemia (AML), advanced myelodysplastic syndrome (MDS), and/or advanced myeloproliferative neoplasm. Drugs used in chemotherapy, such as clofarabine and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving the drugs in different doses may kill more cancer cells. Colony stimulating factors, such as filgrastim, may increase the number of immune cells found in bone marrow or peripheral blood and may help the immune system recover from the side effects of chemotherapy.

COMPLETED
Sorafenib in Combination With Cytarabine and Clofarabine in Patients With Refractory or Relapsed Hematologic Malignancies
Description

This is a Phase I study that determines a tolerable combination of sorafenib, when given sequentially with cytarabine and clofarabine and determines the feasibility of administering this drug combination in patients with relapsed or refractory hematologic malignancies including acute myeloid leukemia (AML), acute promyelocytic leukemia (APL), acute lymphoblastic leukemia (ALL), infantile leukemia (both either AML and/or ALL). AML with prior myelodysplastic syndrome (MDS), myelodysplastic/myeloproliferative neoplasms, and biphenotypic leukemia.

COMPLETED
Azacytidine and Bortezomib in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia or Myelodysplastic Syndromes
Description

RATIONALE: Drugs used in chemotherapy, such as azacytidine work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Bortezomib may stop the growth of cancer cells by blocking blood flow to the cancer and by blocking some of the enzymes needed for cell growth. Giving azacytidine together with bortezomib may kill more cancer cells. PURPOSE: This phase I trial is studying the side effects and best dose of bortezomib when giving together with azacytidine in treating patients with relapsed or refractory acute myeloid leukemia or myelodysplastic syndromes.

COMPLETED
Selumetinib in Treating Patients With Recurrent or Refractory Acute Myeloid Leukemia
Description

This phase II clinical trial is studying how well selumetinib works in treating patients with recurrent or refractory acute myeloid leukemia. Selumetinib may stop the growth of cancer by blocking some of the enzymes needed for cell growth

COMPLETED
MS-275 and GM-CSF in Treating Patients With Myelodysplastic Syndrome and/or Relapsed or Refractory Acute Myeloid Leukemia or Acute Lymphocytic Leukemia
Description

This phase II trial is studying how well giving MS-275 together with GM-CSF works in treating patients with myelodysplastic syndrome and/or relapsed or refractory acute myeloid leukemia. MS-275 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Colony-stimulating factors, such as GM-CSF, may increase the number of immune cells found in bone marrow or peripheral blood. Giving MS-275 together with GM-CSF may be an effective treatment for myelodysplastic syndrome and acute myeloid leukemia

COMPLETED
Vorinostat and Decitabine in Treating Patients With Relapsed, Refractory, or Poor-Prognosis Hematologic Cancer or Other Diseases
Description

This phase I trial is studying the side effects and best dose of vorinostat and decitabine in treating patients with relapsed, refractory, or poor-prognosis hematologic cancer or other diseases. Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving vorinostat together with decitabine may kill more cancer cells

COMPLETED
Vorinostat, Cytarabine, and Etoposide in Treating Patients With Relapsed and/or Refractory Acute Leukemia or Myelodysplastic Syndromes or Myeloproliferative Disorders
Description

This phase I trial is studying the side effects and best dose of vorinostat when given together with cytarabine and etoposide in treating patients with relapsed or refractory acute leukemia or myelodysplastic syndromes or myeloproliferative disorders. Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cytarabine and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving vorinostat together with cytarabine and etoposide may kill more cancer cells.

COMPLETED
Vorinostat and Idarubicin in Treating Patients With Relapsed or Refractory Leukemia or Myelodysplastic Syndromes
Description

This randomized phase I trial is studying the side effects and best dose of vorinostat when given together with idarubicin in treating patients with relapsed or refractory leukemia or myelodysplastic syndromes. Drugs used in chemotherapy, such as vorinostat and idarubicin, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Vorinostat may also stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving vorinostat together with idarubicin may kill more cancer cells.

COMPLETED
7-Hydroxystaurosporine and Perifosine in Treating Patients With Relapsed or Refractory Acute Leukemia, Chronic Myelogenous Leukemia or High Risk Myelodysplastic Syndromes
Description

This phase I trial is studying the side effects and best dose of 7-hydroxystaurosporine when given together with perifosine in treating patients with relapsed or refractory acute leukemia, chronic myelogenous leukemia, or myelodysplastic syndromes. 7-Hydroxystaurosporine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as perifosine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving 7-hydroxystaurosporine together with perifosine may kill more cancer cells.

COMPLETED
Decitabine and FR901228 in Treating Patients With Relapsed or Refractory Leukemia, Myelodysplastic Syndromes, or Myeloproliferative Disorders
Description

This phase I trial is studying the side effects and best dose of decitabine and FR901228 in treating patients with relapsed or refractory leukemia, myelodysplastic syndromes or myeloproliferative disorders. Drugs used in chemotherapy, such as decitabine and FR901228, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. FR901228 may also stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Giving decitabine together with FR901228 may kill more cancer cells.

COMPLETED
BCX-1777 in Treating Patients With Refractory Cancer
Description

RATIONALE: BCX-1777 may stop the growth of cancer cells by blocking the enzymes necessary for their growth. PURPOSE: Phase I trial to study the effectiveness of BCX-1777 in treating patients who have refractory cancer.

Conditions
COMPLETED
VNP40101M in Treating Patients With Relapsed or Refractory Leukemia or Myelodysplastic Syndrome
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. PURPOSE: Phase I trial to study the effectiveness of VNP40101M in treating patients who have relapsed or refractory leukemia or myelodysplastic syndrome.

COMPLETED
Perifosine in Treating Patients With Refractory Solid Tumors or Hematologic Cancer
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase I trial to study the effectiveness of perifosine in treating patients who have refractory solid tumors or hematologic cancer.

COMPLETED
Radiolabeled Monoclonal Antibody Therapy and Etoposide Followed by Peripheral Stem Cell Transplantation in Treating Patients With Advanced Myelodysplastic Syndrome or Refractory Leukemia
Description

RATIONALE: Radiolabeled monoclonal antibodies can locate cancer cells and deliver radiation to them without harming normal cells. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Peripheral stem cell transplantation may allow the doctor to give higher doses of radiation and chemotherapy drugs and kill more cancer cells. PURPOSE: Phase I trial to study the effectiveness of radiolabeled monoclonal antibody therapy plus etoposide followed by peripheral stem cell transplantation in treating patients who have advanced myelodysplastic syndrome or refractory leukemia.

TERMINATED
An Open-Label, Multicenter, Phase 1b/2 Study of the Safety and Efficacy of KRT-232 When Administered Alone and in Combination With Low-Dose Cytarabine (LDAC) or Decitabine in Patients With Acute Myeloid Leukemia (AML)
Description

This study evaluates KRT-232, a novel oral small molecule inhibitor of MDM2, when administered alone and in combination with low-dose cytarabine (LDAC) or Decitabine for the treatment of adults with Acute Myeloid Leukemia (AML) and AML secondary to myeloproliferative neoplasms (MPN). Participants must be relapsed/refractory (having failed prior therapy) and will be assigned to receive monotherapy (KRT-232 alone) or combination therapy (KRT-232 with LDAC or KRT-232 with Decitabine).

COMPLETED
Tacrolimus and Mycophenolate Mofetil With or Without Sirolimus in Preventing Acute Graft-Versus-Host Disease in Patients Who Are Undergoing Donor Stem Cell Transplant for Hematologic Cancer
Description

This randomized phase II trial studies how well giving tacrolimus and mycophenolate mofetil (MMF) with or without sirolimus works in preventing acute graft-versus-host disease (GVHD) in patients undergoing donor stem cell transplant for hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, and total-body-irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune system and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving MMF and tacrolimus with or without sirolimus after transplant may stop this from happening.

Conditions
Myelodysplastic/Myeloproliferative Neoplasm, UnclassifiablePreviously Treated Myelodysplastic SyndromeRefractory Chronic Lymphocytic LeukemiaRefractory Plasma Cell MyelomaWaldenstrom MacroglobulinemiaAccelerated Phase Chronic Myelogenous Leukemia, BCR-ABL1 PositiveAdult Acute Lymphoblastic Leukemia in RemissionAdult Acute Myeloid Leukemia in RemissionAdult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLLAdult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARAAdult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1Atypical Chronic Myeloid Leukemia, BCR-ABL1 NegativeBlast Phase Chronic Myelogenous Leukemia, BCR-ABL1 PositiveChildhood Acute Lymphoblastic Leukemia in RemissionChildhood Acute Myeloid Leukemia in RemissionChildhood Burkitt LymphomaChildhood Chronic Myelogenous Leukemia, BCR-ABL1 PositiveChildhood Diffuse Large Cell LymphomaChildhood Immunoblastic LymphomaChildhood Myelodysplastic SyndromeStage II Contiguous Adult Burkitt LymphomaStage II Contiguous Adult Diffuse Large Cell LymphomaStage II Contiguous Adult Diffuse Mixed Cell LymphomaStage II Contiguous Adult Diffuse Small Cleaved Cell LymphomaStage II Adult Contiguous Immunoblastic LymphomaStage II Contiguous Adult Lymphoblastic LymphomaStage II Grade 1 Contiguous Follicular LymphomaStage II Grade 2 Contiguous Follicular LymphomaStage II Grade 3 Contiguous Follicular LymphomaStage II Contiguous Mantle Cell LymphomaStage II Non-Contiguous Adult Burkitt LymphomaStage II Non-Contiguous Adult Diffuse Large Cell LymphomaStage II Non-Contiguous Adult Diffuse Mixed Cell LymphomaStage II Non-Contiguous Adult Diffuse Small Cleaved Cell LymphomaStage II Adult Non-Contiguous Immunoblastic LymphomaStage II Non-Contiguous Adult Lymphoblastic LymphomaStage II Grade 1 Non-Contiguous Follicular LymphomaStage II Grade 2 Non-Contiguous Follicular LymphomaStage II Grade 3 Non-Contiguous Follicular LymphomaStage II Non-Contiguous Mantle Cell LymphomaStage II Small Lymphocytic LymphomaRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Acute Myeloid LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Burkitt LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Small Lymphocytic LymphomaRecurrent Childhood Hodgkin LymphomaRecurrent Chronic Myelogenous Leukemia, BCR-ABL1 PositiveSecondary Myelodysplastic SyndromeStage I Adult Burkitt LymphomaStage I Adult Diffuse Large Cell LymphomaStage I Adult Diffuse Mixed Cell LymphomaStage I Adult Immunoblastic LymphomaStage I Adult Lymphoblastic LymphomaStage I Childhood Anaplastic Large Cell LymphomaStage I Childhood Large Cell LymphomaStage I Childhood Lymphoblastic LymphomaStage I Childhood Burkitt LymphomaStage I Grade 1 Follicular LymphomaStage I Grade 2 Follicular LymphomaStage I Grade 3 Follicular LymphomaStage I Mantle Cell LymphomaStage I Marginal Zone LymphomaStage I Small Lymphocytic LymphomaStage II Childhood Anaplastic Large Cell LymphomaStage II Childhood Lymphoblastic LymphomaStage II Childhood Burkitt LymphomaStage III Adult Burkitt LymphomaStage III Adult Diffuse Large Cell LymphomaStage III Adult Diffuse Mixed Cell LymphomaStage III Adult Diffuse Small Cleaved Cell LymphomaStage III Adult Immunoblastic LymphomaStage III Adult Lymphoblastic LymphomaStage III Childhood Anaplastic Large Cell LymphomaStage III Childhood Large Cell LymphomaStage III Childhood Lymphoblastic LymphomaStage III Childhood Burkitt LymphomaStage III Grade 1 Follicular LymphomaStage III Grade 2 Follicular LymphomaStage III Grade 3 Follicular LymphomaStage III Mantle Cell LymphomaStage III Marginal Zone LymphomaStage III Small Lymphocytic LymphomaStage IV Adult Burkitt LymphomaStage IV Adult Diffuse Large Cell LymphomaStage IV Adult Diffuse Mixed Cell LymphomaStage IV Adult Diffuse Small Cleaved Cell LymphomaStage IV Adult Immunoblastic LymphomaStage IV Adult Lymphoblastic LymphomaStage IV Childhood Anaplastic Large Cell LymphomaStage IV Childhood Large Cell LymphomaStage IV Childhood Lymphoblastic LymphomaStage IV Childhood Burkitt LymphomaStage IV Grade 1 Follicular LymphomaStage IV Grade 2 Follicular LymphomaStage IV Grade 3 Follicular LymphomaStage IV Mantle Cell LymphomaStage IV Marginal Zone LymphomaStage IV Small Lymphocytic Lymphoma
RECRUITING
Pharmacokinetic Study of Venetoclax Tablets Crushed and Dissolved Into a Solution
Description

The use of venetoclax-based therapies for pediatric patients with relapsed or refractory malignancies is increasingly common outside of the clinical trial setting. For patients who cannot swallow tablets, it is common to crush the tablets and dissolve them in liquid to create a solution. However, no PK data exists in adults or children using crushed tablets dissolved in liquid in this manner, and as a result, the venetoclax exposure with this solution is unknown. Primary Objectives • To determine the pharmacokinetics of venetoclax when commercially available tablets are crushed and dissolved into a solution Secondary Objectives * To evaluate the safety of crushed venetoclax tablets administered as an oral solution * To determine the pharmacokinetics of venetoclax solution in patients receiving concomitant strong and moderate CYP3A inhibitors * To determine potential pharmacokinetic differences based on route of venetoclax solution administration (ie. PO vs NG tube vs G-tube) * To determine the concentration of venetoclax in cerebral spinal fluid when administered as an oral solution

ACTIVE_NOT_RECRUITING
A Study of PRT2527 as Monotherapy and in Combination With Zanubrutinib or Venetoclax in Participants With R/R Hematologic Malignancies
Description

This is a Phase 1 dose-escalation study of PRT2527, a potent and highly selective cyclin-dependent kinase (CDK) 9 inhibitor, in participants with select relapsed or refractory (R/R) hematologic malignancies. The purpose of this study is to evaluate the safety, tolerability, recommended phase 2 dose (PR2D), and preliminary efficacy of PRT2527 as a monotherapy and in combination with zanubrutinib or venetoclax.