162 Clinical Trials for Various Conditions
Myelofibrosis (MF) is a rare blood cancer, notable for scarring of the bone marrow (the spongy tissue inside bones) and the spleen becoming larger. The purpose of this study is to assess safety and change in spleen volume when navitoclax is given in combination with ruxolitinib, compared to best available therapy, for adult participants with MF. Navitoclax is an investigational drug (not yet approved) being developed for the treatment of MF. Participants in this study will be randomly selected (like picking numbers out of a hat) to be in 1 of 2 treatment arms. Neither participants nor the study doctor will be able to pick which treatment arm a participants enters. In Arm A, participants will receive navitoclax in combination with ruxolitinib. In Arm B, participants will receive the best available therapy (BAT) for MF. In Arm C, participants will receive navitoclax. Adult participants with a diagnosis of MF that came back or did not get better after earlier treatment will be enrolled. Approximately 330 participants will be enrolled in approximately 322 sites across the world. In Arm A, participants will receive navitoclax tablet by mouth once daily with by mouth ruxolitinib tablet twice daily. In Arm B, participants will receive the BAT available to the investigator. In Arm C, participants will receive navitoclax tablet by mouth once daily. Participants will receive the study drug until they experience no benefit (determined by the investigator), participants cannot tolerate the study drugs, or participants withdraw consent. The approximate treatment duration is about 3 years. There may be higher treatment burden for participants in this trial compared to their standard of care. Participants will attend regular visits during the study at a hospital or clinic. The effect of treatment will be checked by medical assessments, blood and bone marrow tests, checking for side effects, and completing questionnaires.
This phase I trial tests the safety, side effects, and best dose of Q702 in treating patients with hematologic malignancies. Q702 is in a class of medications called immunomodulatory agents. It works by helping the immune system kill cancer cells and by helping the bone marrow to produce normal blood cells. Giving Q702 may be safe, tolerable and/or effective in treating patients with hematologic malignancies.
The purpose of this study is to evaluate the safety, tolerability, and preliminary efficacy of INCB057643 as monotherapy or combination with ruxolitinib for participants with myelofibrosis (MF) and other myeloid neoplasms.
This phase Ib trial determines if samples from a patient's cancer can be tested to find combinations of drugs that provide clinical benefit for the kind of cancer the patient has. This study is also being done to understand why cancer drugs can stop working and how different cancers in different people respond to different types of therapy.
This is a Phase 1 cohort, dose-escalation, dose-expansion study of PRT543 in patients with advanced cancers who have exhausted available treatment options. The purpose of this study is to define a safe dose and schedule to be used in subsequent development of PRT543.
This study evaluates KRT-232 in Combination With TL-895 for the Treatment of Relapsed or Refractory Myelofibrosis and KRT-232 for the Treatment of JAK Inhibitor Intolerant Myelofibrosis.
This is a phase II, open label, prospective, single-arm study evaluating the efficacy and safety of selinexor in patients with PMF or secondary MF (PPV-MF or PET-MF) who are refractory or intolerant to ruxolitinib and/or any other experimental JAK1/2 inhibitors.
The purpose of this study is to evaluate the safety of alisertib and its effect, bad and/or good, on acute megakaryoblastic leukemia (AMKL) or myelofibrosis (MF). The study drug, alisertib, is an investigational drug. An investigational drug is one that has not been approved by the U.S. Food and Drug Administration (FDA). Alisertib has shown evidence in the lab that it may have an effect on a type of cell that produces platelets. This cell is called a megakaryocyte and it is known to be defective (doesn't work well) in both AMKL and MF.
This study evaluates KRT-232, a novel oral small molecule inhibitor of MDM2, for the treatment of patients with myelofibrosis (MF) who no longer benefit from treatment with a JAK inhibitor. Inhibition of MDM2 is a novel mechanism of action in MF. This study will be conducted in 2 phases. Phase 2 will determine the KRT-232 recommended dose and dosing schedule; Phase 3 will test KRT-232 vs Best Available Therapy (BAT). Patients in the Phase 3 part of the study will be randomized 2:1 to receive either KRT-232 (Arm 1) or BAT (Arm 2). The BAT administered will be determined by the treating physician, with the option to "cross-over" to KRT-232 treatment after 6 months of BAT or if the disease worsens at any time.
The purpose of this study is to test a new drug called AUY922. AUY922 is not FDA-approved. AUY922 is a new kind of drug that attacks a protein called HSP90. HSP90 is found in both normal and cancer cells, but the investigators think it is more important in cancer cells. This study will see if AUY922 helps people with myelofibrosis, essential thrombocythemia and polycythemia vera. This study will also see if AUY922 is safe in people with myelofibrosis, essential thrombocythemia and polycythemia vera. It will find out what effects, good and/or bad, AUY922 has on the patient and the disease. The researchers hope that this study will help them to find better treatments for primary myelofibrosis, essential thrombocythemia and polycythemia vera.
The goal of this clinical research study is to find the highest safe dose of RAD001 that can be given as a treatment for leukemia, mantle cell lymphoma, or myelofibrosis. Another goal is to learn how effective the dose that is found is as a treatment.
This is a Phase 1, 2-part, open-label, multicenter, first-in-human (FIH) study to assess the safety, pharmacokinetics (PK), pharmacodynamics (PD), and preliminary clinical activity of TAS1553 administered orally to participants ≥18 years of age with relapsed or refractory (R/R) acute myeloid leukemia (AML) or other myeloid neoplasms where approved therapies have failed or for whom known life-prolonging therapies are not available. The AML population includes de novo AML, secondary AML, and myelodysplastic syndrome (MDS)-transformed into AML. Other myeloid neoplasms include accelerated phase myeloproliferative neoplasms (MPN), and chronic or accelerated phase MPN-unclassifiable (MPN-U) and MDS-MPN. Blast crisis phase of MPNs are considered secondary AML and will be included in the AML cohort. Part 1 is a multicenter, sequential group treatment feasibility study with 1 treatment arm and no masking (dose escalation). Part 2 is a multicenter, two-stage, multiple group, dose confirmation study with 1 treatment arm and no masking (exploratory dose expansion).
RATIONALE: INCB18424 (Ruxolitinib) may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase 1 clinical trial is studying the side effects and best dose of INCB18424 in treating young patients with relapsed or refractory solid tumor, leukemia, or myeloproliferative disease.
This phase II trial is studying how well sunitinib works in treating patients with idiopathic myelofibrosis. Sunitinib may stop the growth of abnormal cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the abnormal cells.
This phase I trial is studying the side effects and best dose of vorinostat when given together with cytarabine and etoposide in treating patients with relapsed or refractory acute leukemia or myelodysplastic syndromes or myeloproliferative disorders. Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cytarabine and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving vorinostat together with cytarabine and etoposide may kill more cancer cells.
This phase I trial is studying the side effects and best dose of decitabine and FR901228 in treating patients with relapsed or refractory leukemia, myelodysplastic syndromes or myeloproliferative disorders. Drugs used in chemotherapy, such as decitabine and FR901228, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. FR901228 may also stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Giving decitabine together with FR901228 may kill more cancer cells.
RATIONALE: Drugs used in chemotherapy, such as fenretinide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving fenretinide in a different way may kill more cancer cells. PURPOSE: This phase I trial is studying the side effects and best dose of intravenous fenretinide in treating patients with refractory or relapsed hematologic cancer.
RATIONALE: BCX-1777 may stop the growth of cancer cells by blocking the enzymes necessary for their growth. PURPOSE: Phase I trial to study the effectiveness of BCX-1777 in treating patients who have refractory cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining chemotherapy with peripheral stem cell transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells. PURPOSE: Phase I/II trial to study the effectiveness of combining docetaxel, ifosfamide, and carboplatin followed by peripheral stem cell transplantation in treating patients with refractory cancer.
This is a Phase 1, multi-center, open-label study with a dose-escalation phase (Phase 1a) and a cohort expansion phase (Phase 1b), to evaluate the safety, tolerability, and PK profile of LP-118 under a once daily oral dosing schedule in up to 100 subjects.
This study is a dose escalation, and cohort expansion study in subjects with advanced cancer for which no standard therapy exists. Subjects must have received prior treatment for cancer that has not worked, or has stopped working.
The purpose of this study is to evaluate the efficacy and safety of 2 dose regimens of imetelstat in participants with intermediate-2 or high-risk myelofibrosis (MF) whose disease is relapsed after or is refractory to Janus Kinase (JAK) inhibitor treatment. Key secondary endpoint includes overall survival.
This is a Phase I study designed to determine the MTD and assess the toxicity associated with clofarabine followed by fractionated cyclophosphamide in patients \> 1 year of age or \< 21 years of age with relapsed or refractory acute leukemias. There will be 25 to 35 patients enrolled. Cohorts of 3 to 6 patients each will receive escalated doses of clofarabine followed by fractionated cyclophosphamide until the MTD is reached. There will be no intra-patient dose escalation. Single-agent cyclophosphamide will be administered by 2-hour IVI on Day 0 of cycle 1. On Days 1, 2, and 3 and Days 8, 9, and 10 clofarabine will be administered by IVI 2 hours before each dose of cyclophosphamide (see the treatment schema below). A cycle is defined as 28 days.
Patients received oral AC220 daily for 14 days to study the side effects, tolerability and best dose for treating relapsed or refractory acute myeloid leukemia, regardless of FLT3 status.
RATIONALE: Drugs used in chemotherapy, such as clofarabine and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. PURPOSE: This phase I trial is studying the side effects and best dose of clofarabine and cyclophosphamide in treating patients with relapsed or refractory acute leukemia, chronic myelogenous leukemia, or myeloproliferative disorders.
RATIONALE: Bone marrow transplantation may be able to replace immune cells that were destroyed by the chemotherapy or radiation therapy that was used to kill cancer cells. PURPOSE: Phase II trial to study the effectiveness of allogeneic bone marrow transplantation in treating patients who have multiple myeloma, chronic phase chronic myelogenous leukemia, or agnogenic myeloid metaplasia.
The purpose of this phase II study is to assess the efficacy of AP23573 in patients with specified relapsed or refractory hematological malignancies.
This pilot phase I/II trial studies the side effects and how well sirolimus and mycophenolate mofetil work in preventing graft versus host disease (GvHD) in patients with hematologic malignancies undergoing hematopoietic stem cell transplant (HSCT). Biological therapies, such as sirolimus and mycophenolate mofetil, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop tumor cells from growing. Giving sirolimus and mycophenolate mofetil after hematopoietic stem cell transplant may be better in preventing graft-versus-host disease.
This randomized phase I trial studies the side effects of vaccine therapy in preventing cytomegalovirus (CMV) infection in patients with hematological malignancies undergoing donor stem cell transplant. Vaccines made from a tetanus-CMV peptide or antigen may help the body build an effective immune response and prevent or delay the recurrence of CMV infection in patients undergoing donor stem cell transplant for hematological malignancies.
This phase II trial studies how well giving fludarabine phosphate, melphalan, and low-dose total-body irradiation (TBI) followed by donor peripheral blood stem cell transplant (PBSCT) works in treating patients with hematologic malignancies. Giving chemotherapy drugs such as fludarabine phosphate and melphalan, and low-dose TBI before a donor PBSCT helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from the donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cell from a donor can make an immune response against the body's normal cells. Giving tacrolimus, mycophenolate mofetil (MMF), and methotrexate after transplant may stop this from happening