731 Clinical Trials for Various Conditions
The purpose of this study is to learn more about LP-118 (an experimental drug) and its side effects and decide on acceptable doses. The purpose of this study is to determine if LP-118 can be given safely with another medicine called ponatinib, that is FDA-approved for the treatment of acute lymphoblastic leukemia.
The overall goal of this expanded access program is to provide Venetoclax and Navitoclax to patients with acute lymphocytic leukemia (ALL) or lymphoblastic lymphoma (LL) who have exhausted standard treatments.
This phase Ib/II trial studies the effects of tagraxofusp and low-intensity chemotherapy in treating patients with CD123 positive acute lymphoblastic leukemia or lymphoblastic lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Tagraxofusp consists of human interleukin 3 (IL3) linked to a toxic agent called DT388. IL3 attaches to IL3 receptor positive cancer cells in a targeted way and delivers DT388 to kill them. Chemotherapy drugs, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving tagraxofusp with chemotherapy may help control CD123 positive relapsed or refractory acute lymphoblastic leukemia or lymphoblastic lymphoma.
The purpose of this study is to determine the maximum tolerated dose (MTD) and/or recommended phase 2 dose (RP2D), safety and toxicity, and pharmacokinetics (PK) of ixazomib administered intravenously in combination with multiagent reinduction chemotherapy in pediatric participants with relapsed/refractory ALL or LLy.
This is a phase 1/2 study of a drug called Ixazomib in combination with cytotoxic chemotherapy consisting of Vincristine, Dexamethasone, Asparaginase, and Doxorubicin (VXLD).
This study will explore 2 different doses of inotuzumab ozogamicin including the dose that is approved and a lower dose. The main purpose of this study is to evaluate whether a dose of inotuzumab ozogamicin, lower than the approved dose, could be recommended for adult patient with relapsed or refractory ALL who may be at higher risk for severe liver problems after inotuzumab ozogamicin treatment and stem cell transplant (a potentially curative therapy that can replace cancer cells with healthy cells). Efficacy and safety of the 2 doses will be evaluated.
This dose-escalating study is to determine the safety, pharmacokinetics, and preliminary efficacy of venetoclax in combination with navitoclax and chemotherapy in adult and pediatric participants with relapsed/refractory acute lymphoblastic leukemia (ALL) or relapsed/refractory lymphoblastic lymphoma. A safety expansion cohort of approximately 20 patients may be enrolled in addition to the 50 participants in dose-escalation cohort.
This phase II trial studies the side effects and how well combination chemotherapy works in treating patients with acute lymphoblastic leukemia, lymphoblastic lymphoma, Burkitt lymphoma/leukemia, or double-hit lymphoma/leukemia that has come back or does not respond to treatment. Drugs used in chemotherapy, such as clofarabine, etoposide, cyclophosphamide, vincristine sulfate liposome, dexamethasone and bortezomib, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
This is a phase II study designed to investigate the combination of bortezomib with the mitoxantrone reinduction regimen used in the ALL R3 trial. The study will enroll patients with high risk ALL relapse including early bone marrow relapse and second or greater relapse of any kind. Patients with relapsed LL will also be eligible. Bone marrow evaluation will be performed after blood counts recover to assess the rate of CR (\<5% bone marrow blasts) and MRD status in children following this regimen. Further treatment with or without HSCT will be at the discretion of the primary physician.
This phase II trial studies how well a dose adjusted regimen consisting of etoposide, prednisone, vincristine sulfate, cyclophosphamide, and doxorubicin hydrochloride (EPOCH) works in combination with ofatumumab or rituximab in treating patients with Burkitt lymphoma that is newly diagnosed, or has returned after a period of improvement (relapsed), or has not responded to previous treatment (refractory) or relapsed or refractory acute lymphoblastic leukemia. Drugs used in chemotherapy, such as etoposide, prednisone, vincristine sulfate, cyclophosphamide, and doxorubicin hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as ofatumumab and rituximab, may interfere with the ability of cancer cells to grow and spread. Giving more than one drug (combination chemotherapy) together with monoclonal antibody therapy may kill more cancer cells.
The investigators want to learn about treating relapsed/refractory lymphoblastic leukemia and lymphoma with a drug called sirolimus. The investigators are using sirolimus along with other cancer drugs that are often given to patients with relapsed leukemia and lymphoma. The main purpose of this study is to determine if sirolimus can be given safely in combination with standard drugs used to treat relapsed lymphoblastic leukemia/lymphoma.
This is a phase 2 study looking at efficacy and toxicity of oral sirolimus in combination with oral methotrexate in children with refractory/relapsed ALL or NHL. Secondary objectives include characterizing the trough levels produced by administration of oral sirolimus in children with refractory/relapsed ALL/NHL and to evaluate the effect of sirolimus on intracellular targets related to mTOR inhibition.
The goal of this clinical research study is to learn if CMC-544 given alone, and possibly given in combination with rituximab, can help to control the disease in patients with ALL. The safety of the study drug(s) will also be studied.
The main purpose of this study is to find out how well participants with relapsed or refractory ALL respond to treatment with an etoposide- and teniposide-based induction chemotherapy regimen and what the side effects are. Primary Objectives: * To estimate the response rate for patients with refractory or relapsed ALL. * To estimate the survival rate of patients with refractory or relapsed ALL treated with risk-directed therapy.
RATIONALE: BL22 immunotoxin can locate tumor cells and kill them without harming normal cells. BL22 immunotoxin may be effective in treating relapsed or refractory acute lymphoblastic leukemia and non-Hodgkin's lymphoma. PURPOSE: This phase I trial is studying the side effects and best dose of BL22 immunotoxin in treating young patients with relapsed or refractory acute lymphoblastic leukemia or non-Hodgkin's lymphoma.
With this research study has following goals * To confirm the highest tolerable dose of palbociclib in combination with chemotherapy is safe and well-tolerated. * To learn more about side effects of palbociclib in combination with chemotherapy; * To learn more about the biological effects of palbociclib on the cells in your body
Primary Objective: Evaluate the anti-leukemic activity of isatuximab in combination with standard chemotherapies in pediatric participants of ages 28 days to less than 18 years with Relapsed/Refractory Acute Lymphoblastic Leukemia (ALL) or Acute Myeloid Leukemia (AML) Secondary Objectives: * Safety and tolerability assessments * Assessment of infusion reactions (IRs) * Pharmacokinetics (PK) of isatuximab * Minimal residual disease * Overall response rate * Overall survival * Event free survival * Duration of response * Relationship between clinical effects and CD38 receptor density and occupancy
This phase I/II trial studies the best dose of venetoclax when given together with ponatinib and dexamethasone and to see how well they work in treating participants with Philadelphia chromosome or BCR-ABL positive acute lymphoblastic leukemia or chronic myelogenous leukemia that has come back or does not respond to treatment. Drugs used in chemotherapy, such as venetoclax and dexamethasone, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Ponatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving venetoclax, ponatinib, and dexamethasone may work better in treating participants with acute lymphoblastic leukemia or chronic myelogenous leukemia.
This phase II trial studies how well low-intensity chemotherapy and blinatumomab work in treating patients with Philadelphia chromosome negative acute lymphoblastic leukemia that has come back or does not respond to treatment. Drugs used in chemotherapy, such as dexamethasone, filgrastim, pegfilgrastim, cyclophosphamide, methotrexate, cytarabine and vincristine sulfate, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as blinatumomab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving low-intensity chemotherapy and blinatumomab may work better at treating acute lymphoblastic leukemia.
Leukemia cells grow and divide fast and out of control. In normal cells, certain proteins called CDK4 and CDK6 control cell growth. The study drug called palbociclib works by blocking the CDK4 and CDK6 proteins. Palbociclib has been shown to kill leukemia cells in the laboratory and in animal studies. Palbociclib will be added to other chemotherapy drugs, such as dexamethasone, that are known to be effective in treating childhood ALL. This study will be done in two parts: Part 1: Dose Escalation and Part 2: Dose Expansion. The goal of Part 1 of the study is to find the highest tolerable combination of palbociclib and chemotherapy that the investigators can give to patients with leukemia. Once those doses are determined, the investigators will enroll patients on Part 2: Dose Expansion. This phase will enroll additional patients that receive the highest tolerated dose of palbociclib as determined in part 1, in order to better understand the side effects and how effective this treatment approach is. With this research study, the investigators hope to meet the following goals: * To find the highest tolerable dose of palbociclib in combination with chemotherapy that can be given without causing severe side effects; * To learn what kind of side effects palbociclib in combination with chemotherapy may have; and * To learn more about the biology effects of palbociclib on the cells in the participant's body. Up to 40 children, adolescents and young adults will participate in both parts of this study at St. Jude only.
This phase I/II studies the side effects of pembrolizumab and blinatumomab and to see how well they work in treating participants with acute lymphoblastic leukemia that has come back or has not responded to the treatment. Monoclonal antibodies, such as pembrolizumab and blinatumomab, may interfere with the ability of tumor cells to grow and spread.
The investigators postulate that Pevonedistat will be effective in patients with relapsed/refractory acute lymphoblastic leukemia (ALL) when combined with a standard backbone ALL chemotherapy regimen.
This phase II trial studies how well blinatumomab, methotrexate, cytarabine, and ponatinib work in treating patients with Philadelphia chromosome (Ph)-positive, or BCR-ABL positive, or acute lymphoblastic leukemia that has come back or does not respond to treatment. Immunotherapy with monoclonal antibodies, such as blinatumomab, may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as methotrexate and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Ponatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving blinatumomab, methotrexate, cytarabine, and ponatinib may work better in treating patients with acute lymphoblastic leukemia.
The body has different ways of fighting infection and disease. No single way is effective at fighting cancer. This research study combines two different ways of fighting disease: antibodies and T cells. Antibodies are proteins that protect the body from disease caused by bacteria or toxic substances. Antibodies work by binding those bacteria or substances, which stops them from growing and causing bad effects. T cells, also called T lymphocytes, are special infection-fighting blood cells that can kill other cells, including tumor cells or cells that are infected. Both antibodies and T cells have been used to treat patients with cancers. They both have shown promise, but neither alone has been sufficient to cure most patients. This study combines both T cells and antibodies to try to create a more effective treatment. This investigational treatment is called autologous T lymphocyte chimeric antigen receptor cells targeted against the CD19 antigen (ATLCAR.CD19) administration. In previous studies, it has been shown that a new gene can be put into T cells that will increase their ability to recognize and kill cancer cells. A gene is a unit of DNA. Genes make up the chemical structure carrying the genetic information that may determine human characteristics (i.e., eye color, height and sex). The new gene that is put in the T cells makes a piece of an antibody called anti-CD19. This antibody can flow through the blood and can find and stick to leukemia cells because these leukemia cells have a substance on their surface called CD19. Anti-CD19 antibodies have been used to treat people with leukemia but have not been strong enough to cure most patients. For this study, the anti-CD19 antibody has been changed so that instead of floating free in the blood a piece of it is now joined to the surface of the T cells. Only the part of the antibody that sticks to the leukemia cells is attached to the T cells instead of the entire antibody. When an antibody is joined to a T cell in this way it is called a chimeric receptor. These CD19 chimeric (combination) receptor-activated T cells kill some of the tumor, but they do not last very long in the body and so their chances of fighting the cancer are unknown. Preliminary results of giving ATLCAR.CD19 cells to leukemia patients have been encouraging; however, many subjects receiving this treatment have experienced unwanted side effects including neurotoxicity and/or cytokine release syndrome (also referred to as cytokine storm or an infusion reaction). Cytokines are small proteins that interreact as e signals to other cells and are the way cells talk to one another. During cytokine release syndrome, too many cytokines are released and too many cells in your body react to their release. Symptoms resulting from cytokine release syndrome vary from flu-like symptoms to more severe side effects such as cardiac arrest, multi-system organ failure or death. We predict that about 50% of patients on this study will experience mild to severe cytokine release syndrome. To help reduce cytokine release syndrome symptoms in future patients, a safety switch has been added to the ATLCAR.CD19 cells that can cause the cells to become dormant or "go to sleep". The safety switch is called inducible caspase 9 or iC9. The modified ATLCAR.CD19 cells with the safety switch are referred to as iC9-CAR19 cells. The purpose of this study is to determine whether receiving the iC9-CAR19 cells is safe and tolerable (there are not too many unwanted effects). Researchers has previously tested different doses of the iC9-CAR19. An effective dose that had the least number of unwanted side effects in patients was identified. It was planned to test this dose in more patients to learn more about its effect in the body. This type of research study is called a dose expansion study. It will allow the investigators to collect more information about the effect of this dose in treating of certain type of cancer.
The main purpose of this investigational research study is to determine how safe and tolerable the study drug volasertib is in combination with liposomal vincristine (Marqibo; an FDA-approved drug) in patients with relapsed/refractory acute lymphoblastic leukemia. While VSLI demonstrated an overall response rate of 35% in Acute Lymphoblastic Leukemia (ALL) patients that had failed to respond to or relapsed after chemotherapy, combining it with other agents may increase clinical benefit. Volasertib inhibits proteins involved in the cell cycle that are increased in ALL. When volasertib inhibits these proteins ALL cells die. In the laboratory, volasertib has been shown to increase activity of vincristine against ALL cells. Therefore, we think the combination of volasertib and VSLI will be more effective against your leukemia than either drug used alone. This study will try to find out what effects, good and/or bad, this drug combination has on the patient and their cancer, and to find a dose that may be used in future studies.
A retrospective chart review study of Philadelphia chromosome-negative R/R ALL patients in the US.
This is a single center, single arm, open-label pilot study to determine the feasibility and safety of a single dose of autologous T cells expressing CD22 chimeric antigen receptors expressing tandem TCRζ and 4-1BB (TCRζ/4-1BB) co-stimulatory domains (referred to as "CART22" cells) administered in split fractions, in adult patients with relapsed or refractory B-cell acute lymphoblastic leukemia.
This phase II trial studies how well sapanisertib works in treating patients with acute lymphoblastic leukemia that has returned after a period of improvement (relapsed) or has not responded to previous treatment (refractory). Sapanisertib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
The primary objective of this study is to evaluate the safety of entospletinib in combination with vincristine (VCR), and dexamethasone (DEX) in adults with previously treated relapsed or refractory B-cell lineage acute lymphoblastic leukemia (ALL). This is a dose escalation study in which after 2 induction cycles participants may be put on maintenance for up to 36 cycles if they have obtained clinical benefit from the treatment.
The purpose of Phase 1b of this study is to: * Asses the safety, tolerability and activity of carfilzomib, alone and in combination with induction chemotherapy, in children with relapsed or refractory acute lymphoblastic leukemia (ALL). * Determine the maximum tolerated dose (MTD) and to recommend a phase 2 dose of carfilzomib in combination with induction chemotherapy. The purpose of Phase 2 of this study is to compare the rate of complete remission (CR) of carfilzomib in combination with vincristine, dexamethasone, PEG asparaginase, daunorubicin (VXLD) at the end of induction therapy to an appropriate external control.