Treatment Trials

94 Clinical Trials for Various Conditions

Focus your search

ACTIVE_NOT_RECRUITING
Romidepsin, CC-486 (5-azacitidine), Dexamethasone, and Lenalidomide (RAdR) for Relapsed/Refractory T-cell Malignancies
Description

Background: Mature T-cell malignancies (TCMs) are a rare group of cancers that usually do not have effective treatments or cures. Because of this, participants with TCMs often relapse and have a poor overall prognosis. This trial is testing if combining several drugs against TCMs can be a more effective. Primary Objective: To test if the combination of romidepsin, CC-486 (5-azacitidine), dexamethasone, and lenalidomide (RAdR) can be given safely to participants with relapsed or treatment refractory TCM. Other (Secondary) Objective: Measure the activity of this combination treatment. Eligibility: People age 18 and older who have a failed or relapsed after standard treatments for mature TCMs. Design: Participants will be screened for eligibility by performing the following tests or procedures: Physical exam Medical history Medicine review Blood and urine tests Symptom review Bone marrow examination Total Body imaging scans or x-rays Tumor biopsy Participants will have blood tests during treatment to make sure their blood cell counts are okay. Romidepsin is infused through an IV placed in one of the veins usually in the arm. Lenalidomide, dexamethasone, and CC-486 (5-azacitidine) are pills or capsules taken by mouth. Participants are asked to keep a diary of when they take their pills to make sure they are taking these medicines properly. Participants will have tumor imaging scans after every 2nd cycle (or 6 weeks) to check if the treatment is working. If the doctors are concerned the cancer has spread to the brain and/or spine, they will have scans of the area(s) and a sampling of the fluid around the brain/spine which is obtained through a small needle inserted into the lower part of the back for a short time to collect the fluid. This procedure is called a spinal tap or lumbar puncture. Participants who have tumor in their skin will have repeat exams of their skin and sometimes photographs taken of these areas to see if the treatment is working. Participants will also be asked to give blood, saliva, and sometimes have optional biopsies of their tumor where these tests are done for research purposes. After they have completed the protocol treatment (6 cycles), they will be asked to return to clinic 30 days after treatment has ended, then every other month (or 60 days) for the first 6 months, then every 3 months (90 days) for 2 years, and then every 6 months for years 2 to 4 after completing treatment. After 4.5 years, they will be seen once a year.

RECRUITING
Pacritinib in Relapsed/Refractory T-cell Lymphoproliferative Neoplasms
Description

The main purpose of this study is to determine the effectiveness of the study drug pacritinib in people with relapsed or refractory lymphoproliferative disorders.

COMPLETED
Interleukin-15 (IL-5) in Combination With Avelumab (Bavencio) in Relapsed/Refractory Mature T-cell Malignancies
Description

Background: Some T-cell lymphomas and leukemias do not respond to standard treatment. Researchers hope to develop a treatment that works better than current treatments. Objective: To test if interleukin (IL-5) combined with avelumab is safe and effective for treating certain cancers. Eligibility: People ages 18 and older with relapsed T-cell leukemias and lymphomas for which no standard treatment exists or standard treatment has failed Design: Participants will be screened with: * Medical history * Physical exam * Blood, urine, heart, and lung tests * Possible tumor biopsy * Bone marrow biopsy: A small needle will be inserted into the hipbone to take out a small amount of marrow. * Computed tomography (CT) or positron emission tomography (PET) scans and magnetic resonance imaging (MRI): Participants will lie in a machine that takes pictures of the body. Participants will get the study drugs for 6 cycles of 28 days each. They will have a midline catheter inserted: A tube will be inserted into a vein in the upper chest. They will get Interleukin-15 (IL-5) as a constant infusion over the first 5 days of every cycle. They will get avelumab on days 8 and 22 of each cycle. They will be hospitalized for the first week of the first cycle. Participants will have tests throughout the study: * Blood and urine tests * Another tumor biopsy if their disease gets worse * Scans every 8 weeks * Possible repeat MRI * Another bone marrow biopsy at the end of treatment, if there was lymphoma in the bone marrow before treatment, and they responded to treatment everywhere else. After they finish treatment, participants will have visits every 60 days for the first 6 months. Then visits will be every 90 days for 2 years, and then every 6 months for 2 years. Visits will include blood tests and may include scans.

RECRUITING
Autologous B7-H3 Chimeric Antigen Receptor T Cells in Relapsed/Refractory Solid Tumors
Description

The purpose of this study is to test the manufacturing feasibility and safety of intravenous (IV) administration of B7-H3CART in children and young adult subjects with relapsed and/or refractory solid tumors expressing B7-H3 target using a standard 3+3 dose escalation design.

COMPLETED
AZD4573 as Monotherapy or in Combinations With Anti-cancer Agents in Patients With r/r PTCL or r/r cHL
Description

This is a modular dose confirmation and expansion study. The core study design is to assess the efficacy of AZD4573, administered as monotherapy or combination therapy, to participants with either r/r PTCL or r/r cHL and to confirm the safety profiles and PK in these populations. Module 1 of this study will evaluate the efficacy, safety, and tolerability of AZD4573 monotherapy in participants with r/r PTCL or r/r cHL. If AZD4573 monotherapy is found to have promising anti-tumour efficacy in Module 1, an AZD4573 monotherapy Phase II expansion may be added via a substantial protocol amendment.

ACTIVE_NOT_RECRUITING
Study of AIC100 CAR T Cells in Relapsed/Refractory Thyroid Cancer
Description

The purpose of this study is to assess the safety and tolerability and determine the recommended Phase 2 dose of AIC100 Chimeric Antigen Receptor (CAR) T cells in patients with relapsed/refractory poorly differentiated thyroid cancer and anaplastic thyroid cancer, including newly diagnosed.

TERMINATED
CAR20.19.22 T-cells in Relapsed, Refractory B-cell Malignancies
Description

In this phase I study, the investigators will first evaluate the safety of CAR20.19.22 T-cells in patients with B-cell non-Hodgkin lymphoma (NHL) / chronic lymphocytic leukemia (CLL).

COMPLETED
Vaccine Enriched, Autologous, Activated T-Cells Directed to Tumor in Patients With Relapsed/Refractory Melanoma
Description

The researchers will investigate if modified T-cells from a patients own system can be utilized to find and destroy metastatic melanoma tumor and thus improve patient outcomes.

Conditions
RECRUITING
Cognitive Aftereffects of Neurotoxicity in Children and Young Adults With Relapsed/Refractory Hematologic Malignancies Who Receive CAR T-cell Therapy
Description

Background: CAR T-cell therapy is a promising new treatment for blood cancers. During treatment, a person s T-cells are genetically changed to kill cancer cells. Researchers want to learn more about the effects of potential problems that may be associated with this treatment. We are specifically interested in learning if and how this treatment may affect the brain or your thinking skills. Objective: To learn if CAR T-cell therapy can affect how children and adults think, process, and remember things. Eligibility: People aged 5-35 who have blood cancer that has not responded to treatment, or the blood cancer has come back after treatment, and who will receive CAR T-cell therapy. Caregivers are also needed. All participants must be able to speak and read in English or Spanish. Design: Participants will be screened with a medical history. Information from participants medical records will be collected. Participants will take tests at home or at NIH to see how well they think, read, learn, remember, reason, and pay attention. The tests will be both computerized and paper/pencil. They will take less than 1 hour to complete. Participants and a parent/adult observer will complete a 5-minute Background Information Form and a checklist of nervous system symptoms. If participants are 5 years or older, they will participate in activities to test their ability to do different thinking tasks, like answer questions, complete puzzle patterns, and remember things. Participants and their caregivers will complete questions to see if they are having specific symptoms related to receiving CAR T-cells. The questions will assess their well-being and needs. The questions will take less than 1 hour to complete. Some tests and questions will be repeated at different time points in the study. Participation will last for up to 3 years....

WITHDRAWN
RO4929097 in Children With Relapsed/Refractory Solid or CNS Tumors, Lymphoma, or T-Cell Leukemia
Description

Background: - The anti-cancer drug RO4929097 is being tested for its ability to block blood vessel growth to tumors and slow or stop the growth of cancer cells. However, it has been used in only a small number of adults and has not yet been tested in children. Researchers are interested in determining whether RO4929097 is a safe and effective treatment for tumors or leukemia that has not responded to standard treatment. Objectives: - To determine the safety and effectiveness of RO4929097 as a treatment for children and adolescents who have been diagnosed with certain kinds of cancer that have not responded to standard treatment. Eligibility: - Children, adolescents, and young adults between 1 and 21 years of age who have been diagnosed with solid, nervous system, or blood-based cancers that have not responded to standard treatment. Design: * Participants will be screened with a medical history, physical examination, blood and urine tests, and imaging studies. Some participants may also have a bone marrow biopsy to evaluate the state of their disease. * Participants will be separated into three groups: One group will receive RO4929097 alone, and the other two will receive RO4929097 in combination with the immune-suppressing drug dexamethasone. * RO4929097 will be given as tablets on one of two schedules: days 1 to 3 of every week (Schedule A) or days 1 to 5 of every week (Schedule B). The dosing schedule will be determined randomly. Every 4-week treatment period is one cycle, and participants may receive RO4929097 for up to 24 cycles. * Participants will have frequent blood and urine tests and imaging studies to evaluate the progress of treatment, and will be asked to keep a diary to monitor any side effects.

RECRUITING
A2-ESO-1 TCR-Engineered T Cells for Relapsed/Refractory Advanced or Metastatic NY-ESO-1 Overexpression Positive Triple Negative Breast Cancer
Description

This phase Ib trial tests the safety, side effects and best dose of anti-HLA-A2/NY-ESO-1 T-cell receptor (TCR)-transduced autologous T lymphocytes (A2-ESO-1 TCR-T cells) in treating patients with NY-ESO-1 overexpression positive triple negative breast cancer (TNBC) that has come back after a period of improvement (relapsed/recurrent) or that does not respond to treatment (refractory), and that may have spread from where it first started (primary site) to nearby tissue, lymph nodes (advanced) or to other places in the body (metastatic). NY-ESO-1 is an antigen found on the surface of many different types of tumor cells including TNBC. Antigens make it possible for immune cells to recognize and kill germ cells that invade the body, however, it is more difficult for immune cells to recognize antigens on tumor cells. T cells are a special type of immune cell in the blood. These T cells may be trained to recognize the NY-ESO-1 antigen on tumor cells, allowing the T cells to attack and kill those tumor cells. The A2-ESO-1 TCR-T cells are T cells that have been removed from the patient's blood through a process called leukapheresis and then changed in the laboratory to recognize NY-ESO-1 on tumor cells. When given back to the patient, these A2-ESO-1 TCR-T cells find and attack tumor cells that express NY-ESO-1. Chemotherapy drugs, such as cyclophosphamide and fludarabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. They are given before the T cells to support optimum activity of the A2-ESO-1 TCR-T cells. IL-2 (aldesleukin) is in a class of drugs known as cytokines. It is a man-made version of a naturally occurring protein that stimulates the body to produce other chemicals which increase the body's ability to fight cancer. A2-ESO-1 TCR-T cells may kill more tumor cells in patients with recurrent or refractory advanced or metastatic TNBC that overexpresses NY-ESO-1.

SUSPENDED
Human AntiCD19 Chimeric Antigen Receptor T Cells for Relapsed or Refractory Lymphoid Malignancies
Description

The purpose of this study is to determine if it is possible to treat relapsed or refractory lymphoid malignancies (Non-Hodgkin Lymphoma, Acute Lymphoblastic Leukemia, Chronic Lymphocytic Leukemia) with a new type of T cell-based immunotherapy (therapy that uses the immune system to treat the cancer).

TERMINATED
Gamma-Secretase Inhibitor RO4929097 in Treating Young Patients With Relapsed or Refractory Solid Tumors, CNS Tumors, Lymphoma, or T-Cell Leukemia
Description

This phase I/II clinical trial is studying the side effects and best dose of gamma-secretase inhibitor RO4929097 and to see how well it works in treating young patients with relapsed or refractory solid tumors, CNS tumors, lymphoma, or T-cell leukemia. Gamma-secretase inhibitor RO4929097 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

Conditions
Childhood Atypical Teratoid/Rhabdoid TumorChildhood Central Nervous System ChoriocarcinomaChildhood Central Nervous System GerminomaChildhood Central Nervous System Mixed Germ Cell TumorChildhood Central Nervous System TeratomaChildhood Central Nervous System Yolk Sac TumorChildhood Choroid Plexus TumorChildhood CraniopharyngiomaChildhood EpendymoblastomaChildhood Grade I MeningiomaChildhood Grade II MeningiomaChildhood Grade III MeningiomaChildhood Infratentorial EpendymomaChildhood MedulloepitheliomaChildhood Mixed GliomaChildhood OligodendrogliomaChildhood Supratentorial EpendymomaGonadotroph AdenomaPituitary Basophilic AdenomaPituitary Chromophobe AdenomaPituitary Eosinophilic AdenomaProlactin Secreting AdenomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Brain Stem GliomaRecurrent Childhood Central Nervous System Embryonal TumorRecurrent Childhood Cerebellar AstrocytomaRecurrent Childhood Cerebral AstrocytomaRecurrent Childhood EpendymomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood MedulloblastomaRecurrent Childhood PineoblastomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Childhood Spinal Cord NeoplasmRecurrent Childhood Subependymal Giant Cell AstrocytomaRecurrent Childhood Supratentorial Primitive Neuroectodermal TumorRecurrent Childhood Visual Pathway and Hypothalamic GliomaRecurrent Childhood Visual Pathway GliomaRecurrent Pituitary TumorRecurrent/Refractory Childhood Hodgkin LymphomaT-cell Childhood Acute Lymphoblastic LeukemiaT-cell Large Granular Lymphocyte LeukemiaTSH Secreting AdenomaUnspecified Childhood Solid Tumor, Protocol Specific
RECRUITING
Phase II Study of Salvage Radiation Treatment After B-cell Maturation Antigen Chimeric Antigen Receptor T-cell Therapy for Relapsed Refractory Multiple Myeloma
Description

This study is a Phase II study to determine the preliminary safety and efficacy of salvage radiation treatment after BCMA CAR-T therapy in subjects with RRMM. The study population will consist of subjects with RRMM previously treated with SOC BCMA CAR-T cell therapy with active disease on the D30+ PET or other imaging scan after CAR-T infusion. Patients who are planned for salvage chemotherapy less than 14 days after completion of radiation treatment will be excluded. Radiation treatment will be to bony or soft tissue plasmacytomas in up to five radiation treatment fields to 10-20Gy (or equivalent dose in 2Gy fractions of 10-21Gy). Final dose, target, and technique are per treating radiation physician discretion within these guidelines. Thirty patients will be enrolled. The co-primary endpoints are objective response rate (ORR) at 6 months and duration of response (DOR) among responders.

ACTIVE_NOT_RECRUITING
Nivolumab for Relapsed, Refractory, or Detectable Disease Post Chimeric Antigen Receptor T-cell Treatment in Patients With Hematologic Malignancies
Description

This phase II trial studies how well nivolumab works for the treatment of hematological malignancies that have come back (relapsed), does not respond (refractory), or is detectable after CAR T cell therapy. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.

RECRUITING
Autologous CAR-T Cells Targeting CSPG4 in Relapsed/Refractory HNSCC
Description

The purpose of this study is to test the safety and tolerability of using a new treatment called autologous T lymphocyte chimeric antigen receptor cells against the CSPG4 antigen (iC9.CAR-CSPG4 T cells) in patients with head and neck cancer that came back after receiving standard therapy for this cancer. The iC9.CAR-CSPG4 treatment is experimental and has not been approved by the Food and Drug Administration. How many (dose) of the iC9.CAR. CSPG4 T cells are safe to use in patients without causing too many side effects, and what is the maximum dose that could be tolerated will be investigated. The information collected from the study would help cancer patients in the future. There are two parts to this study. In part 1, blood will be collected to prepare the iC9.CAR-CSPG4 T cells. Disease fighting T cells will be isolated and modified to prepare the iC9.CAR-CSPG4 T cells. In part 2, the iC9.CAR-CSPG4 T cells are given by infusion after completion of lymphodepletion chemotherapy. The data from the dose escalation will be used to determine a recommended phase 2 dose (RP2D), which will be decided based on the maximum tolerated dose (MTD). Additionally, recommended phase 2 dose will be tested. Eligible subjects will receive lymphodepletion chemotherapy standard followed by infusion of iC9-CAR.CSPG4 T cells. After treatment completion or discontinuation, subjects will be followed since involving gene transfer experiments.

RECRUITING
Phase I Study of Anti-CD22 Chimeric Receptor T Cells in Patients With Relapsed/Refractory Hairy Cell Leukemia and Variant
Description

Background: CAR (Chimeric Antigen Receptor) T cell therapy is a type of cancer treatment in which a person s T cells (a type of immune cell) are changed in a laboratory to recognize and attack cancer cells. Researchers want to see if this treatment can help people with hairy cell leukemia (HCL). Objective: To test whether it is safe to give anti-CD22 CAR T cells to people with HCL. Eligibility: Adults ages 18 and older with HCL (classic or variant type) who have already had, are unable to receive, or have refused other standard treatments for their cancer. Design: Participants will be screened with the following: Medical history Physical exam Blood and urine tests Biopsy sample Electrocardiogram Echocardiogram Lung function tests Imaging scans Some screening tests will be repeated during the study. Participants may need to have a catheter placed in a large vein. Participants will have magnetic resonance imaging of the brain. Participants will have a neurologic evaluation and fill out questionnaires. Participants will have leukapheresis. Blood will be removed from the participant. A machine will divide whole blood into red cells, plasma, and lymphocytes. The lymphocytes will be collected. The remaining blood will be returned to the participant. Participants will get infusions of chemotherapy drugs. Participants will get an infusion of the anti-CD22 CAR T cells. They will stay at the hospital for 14 days. Then they will have visits twice a week for 1 month. After treatment, participants will be followed closely for 6 months, and then less frequently for at least 5 years. Then they will have long-term follow-up for 15 years.

RECRUITING
CAR-20/19-T Cells in Patients With Relapsed Refractory B Cell Malignancies
Description

This is a Phase I/II, interventional, single-arm, open-label, treatment study designed to evaluate the safety and efficacy of Interleukin-7 and Interleukin-15 (IL-7/IL-15) manufactured chimeric antigen receptor (CAR)-20/19-T cells as well as the feasibility of a flexible manufacturing schema in adult patients with B cell malignancies that have failed prior therapies.

RECRUITING
A Study to Evaluate Safety, PK, PD and Efficacy of AZD5492, a T Cell-engaging Antibody Targeting CD20 in Subjects With R/R B-Cell Malignancies.
Description

This is a Phase I/II study designed to evaluate if experimental T cell engaging antibody targeting CD20 AZD5492 is safe, tolerable and efficacious in participants with Relapsed or Refractory B-Cell Malignancies.

RECRUITING
A Safety and Efficacy Study Evaluating CTX131 in Adult Subjects With Relapsed/Refractory Hematologic Malignancies
Description

This is an open label, multicenter, phase 1/2 dose evaluation and cohort expansion study evaluating the safety and efficacy of CTX131 in subjects with Relapsed/Refractory Hematologic Malignancies

RECRUITING
Pilot Study of Anti-CD19 Chimeric Antigen Receptor T Cells (CAR-T Cells) for the Treatment of Relapsed/Refractory CD19+ Malignancies
Description

This is an open label, non-randomized, phase 1 study of anti-CD19 CAR-T cells against relapsed CD19 positive NHL, CLL and ALL based in a lymphodepletion regimen (fludarabine and cyclophosphamide) and using a CellReGen-based process for manufacturing CAR-T cells. This study will utilize a staggered enrollment design with a safety observation period.

RECRUITING
LV20.19 CAR T-Cells in Combination With Pirtobrutinib for Relapsed, Refractory B-cell Malignancies
Description

This is a phase I, interventional, single arm, open label, treatment study designed to evaluate the safety and efficacy of LV20.19 CAR -T cells with pirtobrutinib bridging and maintenance in adult patients with B cell malignancies that have failed prior therapies.

TERMINATED
A Phase 2 Study of Firi-cel in Patients With Relapsed/Refractory Large B-cell Lymphoma
Description

This is a prospective, open-label, multi-center clinical study designed to evaluate the safety, tolerability, efficacy, pharmacokinetics, pharmacodynamics, and immunogenicity of firicabtagene autoleucel (firi-cel), a CD22-directed autologous Chimeric Antigen Receptor (CAR) T-cell therapy for the treatment of relapsed or refractory large B-cell lymphoma (LBCL).

RECRUITING
Feasibility and Safety of Collecting and Combining Autologous Hematopoietic Stem Cells with Chimeric Antigen Receptor (CAR) T-Cell Therapy in Subjects with Relapsed/Refractory Hematological Malignancies
Description

The study is designed to examine the feasibility and safety of collecting autologous hematopoietic stem cells (HSCs) to be combined with CAR T-cell therapy for patients with relapsed/refractory (r/r) hematological disease. The study will evaluate feasibility of collecting the target dose of HSCs from at least 50% of enrolled patients. The study will assess safety based on incidence and severity of cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) in the first 60 days post CAR T dosing, and also through the collection of adverse events (AEs) and serious adverse events (SAEs) as well as the durability of response after treatment with HSCs with CAR T. The study follows an open-label, single-center and single non-randomized cohort design. 20 subjects with r/r hematological malignancies will be enrolled and treated to evaluate the feasibility and preliminary safety of collecting autologous HSCs and combining them with CAR T-cell therapy.

RECRUITING
Study to Evaluate Adverse Events, Change in Disease Activity, and How Oral ABBV-101 Moves Through the Body in Adult Participants With B-Cell Malignancies
Description

Non-Hodgkin's lymphoma (NHL) is a cancer that arises from the transformation of normal B and T lymphocytes (white blood cells). The purpose of this study is to assess the safety, pharmacokinetics, and preliminary efficacy of ABBV-101 in adult participants in relapsed or refractory (R/R) non-Hodgkin's lymphomas: third line or later of treatment (3L) + chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), diffuse large b-cell lymphoma (DLBCL), non-germinal center B cell (GCB) DLBCL, mantle cell lymphoma (MCL), follicular lymphoma (FL), marginal zone lymphoma (MZL), Waldenström macroglobulinemia (WM), or transformed indolent NHL. Adverse events will be assessed. ABBV-101 is an investigational drug being developed for the treatment of NHL. This study will include a dose escalation phase to determine the maximum administered dose (MAD)/Maximum tolerated dose (MTD) of ABBV-101 and a dose expansion phase to determine the change in disease activity in participants with CLL or non-GCB DLBCL. Approximately 244 adult participants with multiple NHL subtypes will be enrolled in the study in sites world wide. In the Dose Escalation phase of the study participants will receive escalating oral doses of ABBV-101, until the MAD/MTD is determined, as part of the approximately 88 month study duration. In the dose expansion phase of the study participants receive oral ABBV-101, as part of the approximately 88 month study duration . There may be higher treatment burden for participants in this trial compared to their standard of care. Participants will attend regular visits during the study at an approved institution (hospital or clinic). The effect of the treatment will be frequently checked by medical assessments, blood tests, and side effects.

TERMINATED
NKTR-255 vs Placebo Following CD19-directed CAR-T Therapy in Patients With Relapsed/Refractory Large B-cell Lymphoma
Description

This study will evaluate the safety and efficacy of NKTR-255 following CD19-directed chimeric antigen (CAR)-T cell therapy in patients with relapsed or refractory (R/R) large B-cell lymphoma (LBCL). NKTR-255 is an investigational IL-15 receptor agonist designed to boost the immune system's natural ability to fight cancer. T cells are infection fighting blood cells that can kill tumor cells. Chimeric antigen (CAR)-T cell product consists of genetically engineered T-cells, modified to recognize CD19, a protein on the surface of cancer cells. These CD19-specific T cells may help the body's immune system identify and kill CD19-positive cancer cells. Giving NKTR-255 following the treatment with CD19 CAR-T cell therapy may work better in treating large B-cell lymphoma than either drug alone.

TERMINATED
A Clinical Study of ONCT-808 in Subjects With Relapsed or Refractory B-Cell Malignancies
Description

This is a Phase 1/2 study to investigate the safety and efficacy of the CAR-T therapy, ONCT-808, in patients with relapsed/refractory (R/R) aggressive B cell malignancies.

RECRUITING
CD19-Directed CAR-T Cell Therapy for the Treatment of Relapsed/Refractory B Cell Malignancies
Description

This phase I trial studies the effects of CD-19 directed chimeric antigen receptor (CAR)-T cell therapy for the treatment of patients with B cell malignancies that have come back (recurrent) or have not responded to treatment (refractory). CD-19 CAR-T cells use some of a patient's own immune cells, called T cells, to kill cancer. T cells fight infections and, in some cases, can also kill cancer cells. Some T cells are removed from the blood, and then laboratory, researchers will put a new gene into the T cells. This gene allows the T cells to recognize and possibly treat cancer. The new modified T cells are called the IC19/1563 treatment. IC19/1563 may help treat patients with relapsed/refractory B cell malignancies.

RECRUITING
ET140203 T Cells in Pediatric Subjects With Hepatoblastoma, HCN-NOS, or Hepatocellular Carcinoma
Description

Open-label, dose escalation, multi-center, Phase I/II clinical trial to assess the safety/tolerability and determine the recommended Phase II Dose (RP2D) of ET140203 T-cells in pediatric subjects who are AFP-positive/HLA-A2-positive and have relapsed/refractory HB, HCN-NOS, or HCC.