140 Clinical Trials for Various Conditions
This is a first-in-human Phase 1a/1b multicenter, open-label study designed to evaluate the safety and anti-cancer activity of UBX-303061 in patients with relapsed/refractory B-cell malignancies.
This is a phase I, interventional, single arm, open label, treatment study designed to evaluate the safety and efficacy of LV20.19 CAR -T cells with pirtobrutinib bridging and maintenance in adult patients with B cell malignancies that have failed prior therapies.
This clinical trial is evaluating a drug called AC676 in participants with Relapsed/Refractory B-cell Malignancies. The main goals of the study are to: * Identify the recommended dose of AC676 that can be given safely to participants * Evaluate the safety profile of AC676 * Evaluate the pharmacokinetics of AC676 * Evaluate the effectiveness of AC676
This is a first-in-human Phase 1a/1b multicenter, open-label study designed to evaluate the safety and anti-cancer activity of NX-5948 in patients with advanced B-cell malignancies.
In this phase I study, the investigators will first evaluate the safety of CAR20.19.22 T-cells in patients with B-cell non-Hodgkin lymphoma (NHL) / chronic lymphocytic leukemia (CLL).
This phase I trial studies the effects of CD-19 directed chimeric antigen receptor (CAR)-T cell therapy for the treatment of patients with B cell malignancies that have come back (recurrent) or have not responded to treatment (refractory). CD-19 CAR-T cells use some of a patient's own immune cells, called T cells, to kill cancer. T cells fight infections and, in some cases, can also kill cancer cells. Some T cells are removed from the blood, and then laboratory, researchers will put a new gene into the T cells. This gene allows the T cells to recognize and possibly treat cancer. The new modified T cells are called the IC19/1563 treatment. IC19/1563 may help treat patients with relapsed/refractory B cell malignancies.
This is a first-in-human Phase 1a/1b multicenter, open-label oncology study designed to evaluate the safety and anti-cancer activity of NX-2127 in patients with advanced B-cell malignancies.
CLBR001 + SWI019 is an combination investigational immunotherapy being evaluated as a potential treatment for patients diagnosed with B cell malignancies who are refractory or unresponsive to salvage therapy or who cannot be considered for or have progressed after autologous hematopoietic cell transplantation. This first-in-human study will assess the safety and tolerability of CLBR001 + SWI019 and is designed to determine the maximum tolerated dose (MTD) or optimal SWI019 dose (OSD). Patients will be administered a single infusion of CLBR001 cells followed by cycles of SWI019. The study will also assess the pharmacokinetics and pharmacodynamics of CLBR001 + SWI019.
This is a Phase I/II, interventional, single-arm, open-label, treatment study designed to evaluate the safety and efficacy of Interleukin-7 and Interleukin-15 (IL-7/IL-15) manufactured chimeric antigen receptor (CAR)-20/19-T cells as well as the feasibility of a flexible manufacturing schema in adult patients with B cell malignancies that have failed prior therapies.
The primary objectives of this study are: Cohort 1: to provide access to brexucabtagene autoleucel (KTE-X19) for individuals with relapsed or refractory (r/r) mantle cell lymphoma (MCL) until KTE-X19 is commercially available Cohort 2: To provide access to KTE-X19 for individuals with r/r MCL whose commercially manufactured product did not meet commercial release specification(s)
This is a global, open-label, multi-arm, parallel multi-cohort, multi-center, Phase 1/2 study to determine the safety, tolerability, PK, efficacy and patient-reported quality of life of JCAR017 in combination with various agents. This protocol is intended to evaluate various drug combinations with JCAR017, as separate arms, over the life of the protocol, using the same objectives. Each combination will be evaluated separately (ie, the intention is not to compare between combinations) for the purposes of the objectives, trial design, and statistical analysis. The following combinations will be tested: Arm A: JCAR017 in combination with durvalumab Arm B: JCAR017 in combination with CC-122 (avadomide) Arm C: JCAR017 in combination with CC-220 (iberdomide) Arm D: JCAR017 in combination with ibrutinib Arm E: JCAR017 in combination with relatlimab and/or nivolumab Arm F: JCAR017 in combination with CC-99282 Additional arms will be added by way of amendment once combination agents have been selected. The study will consist of 2 parts: dose finding (Phase 1) and dose expansion (Phase 2). Dose expansion may occur in one or more arms.
This study evaluates the safety of acalabrutinib and vistusertib when taken in combination.
The purpose of this research study is to determine the safety and tolerability of TL-895. There are 2 parts of this study. Part 1 tested increasing doses of TL-895 to identify the recommended safe dose for participants with relapsed/refractory (R/R) B cell malignancies who failed at least 1 but no more than 3 prior therapies. Part 1 of this study is no longer enrolling participants. Arms 1 \& 2 of Part 2 of this study will test different doses of TL-895 in participants with R/R CLL or SLL who have failed at least 1 prior therapy. Arms 1 \& 2 of Part 2 of this study is randomized (like the flip of a coin) to receive a specific treatment dose. If someone participates in arms 1 or 2 of Part 2, the dose they receive will be either 100mg twice a day or 150mg twice a day. Arms 3 and 4 of Part 2 of this study will test the 150mg and 100mg BID dose of TL-895, respectively in treatment naïve participants with CLL/SLL. Arms 5 and 6 of Part 2 will test 150mg TL-895 BID in combination with 240 mg navtemadlin QD in participants with relapsed/refractory and treatment naïve without 17p(del). Arm 7 will test 150mg TL-895 in combination with 240 mg navtemadlin QD in participants with relapsed/refractory CLL/SLL with 17p(del). Every participant in this study will receive TL-895.
This multicenter phase 1 trial with "3 + 3" dose escalation design seeks to examine the feasibility and safety of the administration of autologous T cells that have been modified through the introduction of chimeric antigen receptors targeting the B cell surface antigens CD19/20/22 following administration of a chemotherapy lymphodepletion regimen in adults with relapsed/refractory B-cell acute lymphoblastic leukemia (ALL) or Non-Hodgkin's lymphoma (NHL). The overall goals of this study are to estimate maximum tolerated dose (MTD) level, establish the overall safety profile and evaluate initial efficacy of administering duo-CAR-T cell treatment in this patient population.
The purpose of this study is to measure the safety, preliminary antitumor activity, pharmacokinetics, and pharmacodynamics with BGB-16673 in combination with other agents in participants with relapsed or refractory (R/R) B-cell malignancies. This study is structured as a master protocol with separate substudies. This study currently includes four substudies, and more substudies may be added as other combination agents are identified.
This study is a Phase 1 dose-escalation and dose-confirmation study to evaluate the safety and antitumor activity of UB-VV111. The study will enroll patients with relapsed/refractory large B-cell lymphoma (LBCL) and chronic lymphocytic leukemia (CLL).
This is an open-label, multicenter, Phase 1/2 study evaluating the safety and efficacy of CTX112™ in subjects with relapsed or refractory B-cell malignancies.
This is a Phase 1/2 study to investigate the safety and efficacy of the CAR-T therapy, ONCT-808, in patients with relapsed/refractory (R/R) aggressive B cell malignancies.
This phase II trial tests whether loncastuximab tesirine works to shrink tumors in patients with B-cell malignancies that have come back (relapsed) or does not respond to treatment (refractory). Loncastuximab tesirine is a monoclonal antibody, called loncastuximab, linked to a chemotherapy drug, called tesirine. Loncastuximab is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, known as CD19 receptors, and delivers tesirine to kill them.
This is a phase I, multi-center, open-label, dose-escalation study to evaluate the safety, tolerability, pharmacokinetics and clinical activity of LP-168 in subjects with relapsed or refractory B-cell malignancies. LP-168 is a small molecule inhibitor.
This is an open-label, multicenter, Phase 1/2 study evaluating the safety and efficacy of CTX110 in subjects with relapsed or refractory B-cell malignancies.
This study is for patients who have lymphoma or leukemia that has come back or has not gone away after treatment. Because there is no standard treatment for this cancer, patients are being asked to volunteer for a gene transfer research study using special immune cells. The body has different ways of fighting infection and disease. No single way seems perfect for fighting cancers. This research study combines two different ways of fighting disease, antibodies and immune cells. Antibodies are types of proteins that protect the body from bacteria and other diseases. Immune cells, also called lymphocytes, are special infection-fighting blood cells that can kill other cells including tumor cells. Both antibodies and lymphocytes have been used to treat patients with cancer. They have shown promise, but have not been strong enough to cure most patients. The antibody used in this study is called anti-CD19. This antibody sticks to lymphoma cells because of a substance on the outside of the cells called CD19. CD19 antibodies have been used to treat people with lymphoma and leukemia. For this study, the anti-CD19 antibody has been changed so that instead of floating free in the blood it is now joined to the NKT cells, a special type of lymphocytes that can kill tumor cells but not very effectively on their own. When an antibody is joined to a T cell in this way it is called a chimeric receptor. Investigators have also found that NKT cells work better if proteins are added that stimulate lymphocytes, such as one called CD28. Adding the CD28 makes the cells last for a longer time in the body but maybe not long enough for them to be able to kill the lymphoma cells. It is believed that by adding an extra stimulating protein, called IL-15, the cells will have an even better chance of killing the lymphoma cells. In this study the investigators are going to see if this is true by putting the anti-CD19 chimeric receptor with CD28 and the IL-15 into NKT cells grown from a healthy individual. These cells are called ANCHOR cells. These cells will be infused into patients that have lymphomas or leukemias that have CD19 on their surface. The ANCHOR cells are investigational products not approved by the Food and Drug Administration. The purpose of this study is to find the biggest dose of ANCHOR cells that is safe, to see how long the ANCHOR cells last, to learn what their side effects are and to see whether this therapy might help people with lymphoma or leukemia.
The purpose of this study is to evaluate the safety, tolerability, dose-limiting toxicities (any harmful effect of a drug) (DLT), maximum tolerated dose (MTD), recommended Phase 2 dose (RP2D) and preliminary clinical activity of duvortuxizumab when administered intravenously to participants with relapsed or refractory B-cell malignancies \[diffuse-large B cell lymphoma (DLBCL), follicular lymphoma (FL), mantle-cell lymphoma (MCL), chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL)\].
The primary objective of this study is to characterize the safety, tolerability, dose-limiting toxicities (DLTs), and maximum tolerated dose (MTD) of relatlimab administered alone or in combination with nivolumab to subjects with relapsed or refractory B-cell malignancies. Co-primary objective is to investigate the preliminary efficacy of relatlimab in combination with nivolumab in subjects with relapsed or refractory Hodgkin lymphoma (HL), and relapsed or refractory Diffused Large B Cell lymphoma (DLBCL)
The purpose of this study is to determine how well SNS01-T is tolerated by relapsed or refractory multiple myeloma, B cell lymphoma or plasma cell leukemia patients when given by intravenous infusion at various doses.
This is an open-label, multicenter, phase II study to evaluate the safety and efficacy of single-agent AT-101 in patients with relapsed or refractory B-cell malignancies.
This phase I trial tests safety, side effects and best dose of B-cell activating factor receptor (BAFFR)-based chimeric antigen receptor T-cells, with fludarabine and cyclophosphamide lymphodepletion, for the treatment of patients with B-cell hematologic malignancies that has come back after a period of improvement (relapsed) or that does not respond to treatment (refractory). BAFFR-based chimeric antigen receptor T-cells is a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory so they will attack cancer cells. T cells are taken from a patient's blood. Then the gene for a special receptor that binds to a certain protein on the patient's cancer cells is added to the T cells in the laboratory. The special receptor is called a chimeric antigen receptor (CAR). Large numbers of the CAR T cells are grown in the laboratory and given to the patient by infusion for treatment of certain cancers. Giving chemotherapy, such as fludarabine and cyclophosphamide, helps ill cancer cells in the body and helps prepare the body to receive the BAFFR based chimeric antigen receptor T-cells. Giving BAFFR based chimeric antigen receptor T-cells with fludarabine and cyclophosphamide for lymphodepletion may work better for the treatment of patients with relapsed or refractory B-cell hematologic malignancies.
ACE1831 is an off-the-shelf, allogeneic gamma delta T (gdT) cell therapy derived from healthy donors, that is under investigation for the treatment of CD20-expressing B-cell malignancies. The ACE1831-001 study is an open-label, Phase I, first-in-human (FIH) study that aims to evaluate the safety and tolerability, pharmacokinetics and pharmacodynamics, and efficacy of ACE1831 in patients with CD20-expressing Non-Hodgkin lymphoma.
This is an open-label, multicenter, phase I study, which primary objective is to characterize the safety and tolerability of PIT565 and to identify maximal tolerated doses (MTDs) and/or recommended doses (RDs), schedule and route of administration in relapsed and/or refractory B-cell Non-Hodgkin lymphoma (R/R B-NHL) and relapsed and/or refractory B-cell acute lymphoblastic leukemia (R/R B-ALL).
The most common types of mature B-cell lymphomas (MBLs) in children are Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL). Initial treatment cures 90% - 95% of children with these malignancies, leaving a very small population of relapsed/refractory disease with a poor prognosis. The purpose of this study is to assess the safety and tolerability of epcoritamab in pediatric participants with relapsed/refractory aggressive mature B-cell neoplasms and young adult participants with Burkitt's or Burkitt-like lymphoma/leukemia. Adverse events and change in disease activity will be assessed. Epcoritamab is an investigational drug being developed for the treatment of relapsed/refractory aggressive mature B-cell neoplasms. Participants will receive subcutaneous (SC) of epcoritamab. Approximately 15 pediatric participants with a diagnosis of relapsed/refractory aggressive mature B-cell neoplasms and and young adult participants, ages of 18-25, with a diagnosis of Burkitt's or Burkitt-like lymphoma/leukemia will be enrolled at 50 sites globally. Participants will receive subcutaneous epcoritamab in 28-day cycles. Participants will be followed for a minimum of 3 years after enrollment. There may be higher treatment burden for participants in this trial compared to their standard of care. Participants will attend regular visits during the study at an approved institution (hospital or clinic). The effect of the treatment will be frequently checked by medical assessments, blood tests, questionnaires and side effects.