210 Clinical Trials for Various Conditions
This is a Phase 1 study investigating the safety and efficacy of Danvatirsen as a monotherapy followed by combination with Venetoclax in patients with relapsed/refractory myelodysplastic syndromes (MDS) or acute myeloid leukemia (AML). Funding Source: FDA OOPD
This is a Phase 1b, open-label, multicenter study designed to evaluate the safety and pharmacokinetics of venetoclax as a single-agent and in combination with azacitidine in participants with relapsed/refractory Myelodysplastic Syndromes (MDS).
Phase I Study of PM01183 in Patients with Advanced Acute Leukemia to determine the maximum tolerated dose (MTD) and the recommended dose (RD) of PM01183.
This is a Phase 1 cohort, dose-escalation, dose-expansion study of PRT543 in patients with advanced cancers who have exhausted available treatment options. The purpose of this study is to define a safe dose and schedule to be used in subsequent development of PRT543.
This is an open-label study of the safety, biodynamics, and anti-cancer activity of SENTI-202 (an off-the-shelf logic gated CAR NK cell therapy) in patients with CD33 and/or FLT3 expressing blood cancers, including AML and MDS.
\[Updated\]: To assess the safety and tolerability of ONO-7475 monotherapy in patients with relapsed or refractory acute myeloid leukemia or relapsed or refractory myelodysplastic syndromes and to assess: i) safety and tolerability and ii) preliminary efficacy of the combination of ONO-7475 and venetoclax in patients with relapsed or refractory acute myeloid leukemia.
This study will be used to determine the maximum tolerated dose of oral clofarabine when administered daily for 14 consecutive days repeated every 21 days.
This is a phase 1/2 study of the combination of CPI-613 and hydroxychloroquine for the treatment of high risk myelodysplastic syndrome patients who have failed a hypomethylating agent.
A Phase 1, Multicenter, Open-label, Dose-escalation Study to Evaluate Safety, Tolerability, Pharmacokinetics, and Clinical Activity of Orally Administered LP-108 as Monotherapy and in Combination with Azacitidine in Subjects with Relapsed or Refractory Myelodysplastic Syndromes (MDS), Chronic Myelomonocytic Leukemia (CMML), or Acute Myeloid Leukemia (AML)
This trial studies the side effects of recombinant EphB4-HSA fusion protein when given together with azacitidine or decitabine in treating patients with myelodysplastic syndrome, chronic myelomonocytic leukemia, or acute myeloid leukemia that has come back or has not responded to previous treatment with a hypomethylating agent. Recombinant EphB4-HSA fusion protein may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Hypomethylating agents, such as azacitidine and decitabine, slow down genes that promote cell growth and can kill cells that are dividing rapidly. Giving recombinant EphB4-HSA fusion protein together with azacitidine or decitabine may work better in treating patients with myelodysplastic syndrome, chronic myelomonocytic leukemia, or acute myeloid leukemia.
The investigators hypothesize that CX-01 will disrupt the bone marrow microenvironment and increase the cytotoxic effects of azacitidine on myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) hematopoietic stem cells by disrupting the High-mobility group box protein 1 (HMGB1) interaction with toll-like receptor 4 (TLR4) and receptors for advanced glycation end products (RAGE), the CXC chemokine CXCL12/chemokine receptor 4 (CXCR4) axis, and by disrupting other leukocyte and vascular adhesion molecules. In addition, CX-01 may also help promote count recovery after treatment given its affinity for platelet factor-4 (PF4). The selection of CX-01 dose for study in relapsed or refractory MDS and AML has been based upon the dual requirements to have sufficient drug administered to have potential activity but without clinically significant anticoagulation. The study dose chosen (4 mg/kg bolus followed by 0.25 mg/kg/hour) fulfills both of these criteria. In addition, this dose is expected to result in serum levels of CX-01 which are significantly higher than the IC90 identified in preclinical studies for inhibition of HMGB1-RAGE, toll-like receptor 2 (TLR2) and TLR4 interaction. Therefore, the chosen dose represents a rational balance between effective dosing and safety in thrombocytopenic patients with MDS and AML. This dose was previously established to be safe and tolerable when combined with cytarabine and idarubicin in patients with AML.
This phase I trial studies the side effects and best dose of ipilimumab when given together with decitabine in treating patients with myelodysplastic syndrome or acute myeloid leukemia that has returned after a period of improvement (relapsed) or does not respond to treatment (refractory). Immunotherapy with monoclonal antibodies, such as ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ipilimumab and decitabine may work better in treating patients with relapsed or refractory myelodysplastic syndrome or acute myeloid leukemia.
The goal of this interventional clinical trial is to evaluate the safety and tolerability of leflunomide in combination with decitabine as treatment for patients with relapsed or refractory myelodysplastic syndromes (R/R MDS). The main question this study aims to answer are to evaluate and estimate the maximum tolerated doses and/or biologically active doses of the combination of leflunomide-decitabine in participants. Decitabine will be administered at a dose of 20 mg/m2 by continuous intravenous infusion over one hour repeated daily for 5 days with repeating cycle every 4 weeks. Leflunomide is administered orally at 10 to 20 mg once daily (without a loading dose) for 14 to 21 days, as part of a 28-day treatment cycle in adult subjects with R/R MDS. After 12 cycles (study duration) responding patients can continue progression with the assigned doses.
This phase I trial tests the safety, side effects, and best dose of eltanexor in combination with venetoclax for the treatment of patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Eltanexor works by trapping "tumor suppressing proteins" within the cell, thus causing the cancer cells to die or stop growing. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Giving eltanexor together with venetoclax may be safe, tolerable and/or effective in treating patients with relapsed or refractory MDS or AML.
This is an open-label, non-randomized, Phase 1 study to determine the safety and tolerability of NC525. This study will also assess the clinical benefit in subjects with advanced myeloid neoplasms.
This trial is evaluating the safety and tolerability of venetoclax with chemotherapy in pediatric and young adult patients with hematologic malignancies, including myelodysplastic syndrome (MDS), acute myeloid leukemia derived from myelodysplastic syndrome (MDS/AML), and acute lymphoblastic leukemia (ALL)/lymphoblastic lymphoma (LBL). The names of the study drugs involved in this study are below. Please note this is a list for the study as a whole, participants will receive drugs according to disease cohort. * Venetoclax * Azacitidine * Cytarabine * Methotrexate * Hydrocortisone * Leucovorin * Dexamethasone * Vincristine * Doxorubicin * Dexrazoxane * Calaspargase pegol * Hydrocortisone
This Phase 1, multicenter, open-label, dose escalation and dose optimization study is designed to assess the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and preliminary clinical activity of AUTX-703 administered orally in subjects with advanced hematologic malignancies.
A Phase 1 Open-label, Multi-center Study of the Safety, Pharmacokinetics (PK), and Anti-tumor Activity of LYT- 200 in Patients with Relapsed/Refractory Acute Myeloid Leukemia (AML), or with Relapsed/refractory, High-risk Myelodysplastic Syndrome (MDS)
The purpose of this study was to evaluate the safety and tolerability and to determine the recommended phase 2 dose (RP2D) and/or the maximum tolerated dose (MTD) of ASP7517. This study also evaluated the clinical response of ASP7517 as well as other measures of anticancer activity of ASP7517.
A Phase I Combination Study of CYC065 and Venetoclax for Relapsed or Refractory AML or MDS
This pilot study is designed to evaluate outcomes with the combination of CPX-351 salvage therapy and haplo-cord graft stem cell transplantation for subjects with relapsed or refractory AML or myelodysplastic syndrome.
This study will assess the safety and efficacy of vismodegib in patients with relapsed/refractory acute myelogenous leukemia (AML) and relapsed/refractory high-risk myelodysplastic syndrome (MDS). Patients in Cohort 1 will receive single-agent vismodegib 150 mg orally daily. In Cohort 2, patients will receive vismodegib 150 mg orally daily in combination with cytarabine 20 mg subcutaneously for 10 days. Anticipated time on study treatment is until disease progression, intolerable toxicity, or patient withdrawal of consent.
This phase I trial is studying the side effects and best dose of decitabine and FR901228 in treating patients with relapsed or refractory leukemia, myelodysplastic syndromes or myeloproliferative disorders. Drugs used in chemotherapy, such as decitabine and FR901228, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. FR901228 may also stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Giving decitabine together with FR901228 may kill more cancer cells.
Valproic acid is a medication that is currently used in the prevention of seizures, bipolar disorder, and migraine headaches. Researchers hope that it may improve the effects of decitabine. Decitabine is a chemotherapy drug with known activity in leukemia and myelodysplastic syndromes.
This phase I trial tests the safety, side effects and best dose of NEXI-001 when given with decitabine and lymphodepleting chemotherapy in treating patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory) following an allogeneic hematopoietic cell transplantation from a matched donor. NEXI-001 is a type of chimeric antigen receptor T cell therapy in which a patient's T cells (a type of immune system cell) are changed in the laboratory so they will attack cancer cells. T cells are taken from a patient's blood. Then the gene for a special receptor that binds to a certain protein on the patient's cancer cells is added to the T cells in the laboratory. The special receptor is called a chimeric antigen receptor (CAR). Large numbers of the CAR T cells are grown in the laboratory and given to the patient by infusion for treatment of certain cancers. Decitabine is in a class of medications called hypomethylation agents. It works by helping the bone marrow produce normal blood cells and by killing abnormal cells in the bone marrow. Lymphodepleting chemotherapy, with fludarabine and cyclophosphamide, helps kill cancer cells in the body and helps prepare the body for the new CAR-T cells. Giving NEXI-001 with decitabine and lymphodepleting chemotherapy may be safe and tolerable in treating patients with relapsed or refractory AML or MDS following an allogeneic hematopoietic cell transplantation from a matched donor.
This is a Phase 1, multi-center, open-label study with a dose-escalation phase (Phase 1a) and a cohort expansion phase (Phase 1b), to evaluate the safety, tolerability, and PK profile of LP-118 under a once daily oral dosing schedule in up to 100 subjects.
CC-90009-AML-001 is a phase 1, open-label, dose escalation and expansion, study in subjects with relapsed or refractory acute myeloid leukemia and relapsed or refractory higher-risk myelodysplastic syndrome.
This study is being done to evaluate the safety and effectiveness of APTO-253 for the treatment of patients with the condition of acute myelogenous leukemia (AML) or myelodysplastic syndrome (MDS) for which either the standard treatment has failed, is no longer effective, or can no longer be administered safely or poses a risk for your general well being.
The goals of this study are to learn about the effectiveness, the side-effects, if waiting to give the idarubicin and cytarabine may change the side effects or effectiveness, and to identify factors to predict for responses to this therapy. The trial will examine combination of three chemotherapy drugs. These drugs are decitabine, idarubicin, and cytarabine.
This study is intended to determine the safety and maximum tolerated dose of a drug, OXi4503 (combretastatin A1 diphosphate, CA1P, OXiGENE), in patients with relapsed and refractory AML and MDS.