36 Clinical Trials for Various Conditions
A multicenter, open-label expanded access protocol for the treatment of subjects with relapsed/refractory large B-cell lymphoma. Subjects who received an infusion of axicabtagene ciloleucel will complete the remainder of the 15 year follow-up assessments in a separate long-term follow-up study, KT-US-982-5968
This is an open-label, multicenter, 2-part study to determine the recommended Phase 2 dose (RP2D) for GSK2816126 given twice weekly by intravenous (IV) infusion. Part 1 will be conducted in adult subjects with relapsed/refractory diffuse large B cell lymphoma (DLBCL), transformed follicular lymphoma (tFL), other Non-Hodgkin's lymphomas (NHL), solid tumors (including castrate resistant prostate cancer) and multiple myeloma (MM) to determine the safety and tolerability of GSK2816126. Expansion cohorts (Part 2) are planned to further explore clinical activity of GSK2816126 at the RP2D in subjects with Enhancer of Zeste 2 (EZH2) wild type and EZH2 mutant positive germinal center B-cell like diffuse large B cell lymphoma (GCB-DLBCL), tFL and MM.
This phase II trial tests how well epcoritamab in combination with standard of care (SOC) platinum-based chemotherapy (rituximab, ifosfamide, carboplatin, etoposide \[RICE\], rituximab, cytarabine, dexamethasone, oxaliplatin or carboplatin RDHAP/X\] or gemcitabine and oxaliplatin \[Gem/Ox\]) and autologous hematopoietic cell transplant (HCT) works in treating patients with large B-cell lymphoma (LBCL) that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Epcoritamab, a type of bispecific T-cell engager, binds to a protein called CD3, which is found on T cells (a type of white blood cell). It also binds to a protein called CD20, which is found on B cells (another type of white blood cell) and some lymphoma cells. This may help the immune system kill cancer cells. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of cancer cells. Oxaliplatin is in a class of medications called platinum-containing antineoplastic agents. It damages the cell's deoxyribonucleic acid (DNA) and may kill cancer cells. Rituximab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells and some types of cancer cells. This may help the immune system kill cancer cells. Chemotherapy drugs, such as ifosfamide, etoposide phosphate, cytarabine, and gemcitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Dexamethasone is in a class of medications called corticosteroids. It is used to reduce inflammation and lower the body's immune response to help lessen the side effects of chemotherapy drugs. An autologous HCT is a procedure in which blood-forming stem cells (cells from which all blood cells develop) are removed, stored, and later given back to the same person. Giving epcoritamab in combination with SOC platinum-based chemotherapy, such as RICE, RDHAP/X and Gem/Ox, and autologous HCT may kill more cancer cells in patients with relapsed or refractory LBCL.
This phase II trial tests how well odronextamab works before and after standard of care (SOC) chimeric antigen receptor (CAR) T-cell therapy in treating patients with diffuse large B-cell lymphoma (DLBCL) that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). CAR-T cell therapy is the SOC treatment most patients receive when other treatments have failed. CAR-T cell therapy is a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory so they will attack cancer cells. T cells are taken from a patient's blood. Then the gene for a special receptor that binds to a certain protein on the patient's cancer cells is added to the T cells in the laboratory. The special receptor is called a CAR. Large numbers of the CAR T cells are grown in the laboratory and given to the patient by infusion for treatment of certain cancers. Odronextamab is a monoclonal antibody that is called bispecific, as it individually targets 2 cell proteins, CD20 and CD3. Proteins are part of each cell in the body, which work together like little machines for the cell to function. CD20 is a protein that is found on the surface of both normal B-cells and B-cells that make up certain cancers, like DLBCL. CD3 is a protein that is found on the surface of T cells. T-cells and normal B-cells are types of white blood cells in the body and are a part of the immune system that fights infections. Odronextamab is designed to help T-cells find and kill the B-cells including the cancer cells in DLBCL. Giving odronextamab before and after CAR T-cell therapy may improve response in patients with relapsed or refractory DLBCL.
This phase I trial tests the safety, side effects, and best dose of genetically engineered cells called EGFRt/19-28z/IL-12 CAR T cells, and to see how they work in treating patients with hematologic malignancies that makes a protein called CD19 (CD19-positive) that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Chimeric Antigen Receptor (CAR) T-cell Therapy is a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory so they will attack cancer cells. T cells are taken from a patient's blood. Then the gene for a special receptor that binds to a certain protein on the patient's cancer cells is added to the T cells in the laboratory. The special receptor is called a chimeric antigen receptor (CAR). Large numbers of the CAR T cells are grown in the laboratory and given to the patient by infusion for treatment of certain cancers. To improve the effectiveness of the modified T cells and to help the immune system fight cancer cells better, the modified T cells given in this study will include a gene that makes the T cells produce a cytokine (a molecule involved in signaling within the immune system) called interleukin-12 (IL-12). The researchers think that IL-12 may improve the effectiveness of the modified T cells, and it may also strengthen the immune system to fight cancer. Giving EGFRt/19-28z/IL-12 CAR T cells may be safe and tolerable in treating patients with relapsed or refractory CD19+ hematologic malignancies.
This phase II clinical trial evaluates tafasitamab and lenalidomide followed by tafasitamab and the carboplatin, etoposide and ifosfamide (ICE) regimen as salvage therapy for transplant eligible patients with large B-cell lymphoma that has come back (relapsed) or has not responded to treatment (refractory). Tafasitamab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Lenalidomide may have antineoplastic activity which may help block the formation of growths that may become cancer. Drugs used in chemotherapy, such as carboplatin, etoposide and ifosfamide work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving tafasitamab and lenalidomide followed by ICE may be a better treatment for patients with relapsed or refractory large B-cell lymphomas.
This is a multicenter Phase 1b study evaluating the safety, tolerability, and preliminary anti-tumor activity of NT-I7 administration following standard of care CD19 CAR T-cell therapy for eligible subjects with r/r LBCL.
This study characterizes cardiac events following standard of care chimeric antigen receptor T cell therapy in patients with aggressive B-Cell Lymphoma that has come back (relapsed) or does not respond to treatment (refractory). The results from this study may allow a description of these events, their managements and outcome.
CLBR001 + SWI019 is an combination investigational immunotherapy being evaluated as a potential treatment for patients diagnosed with B cell malignancies who are refractory or unresponsive to salvage therapy or who cannot be considered for or have progressed after autologous hematopoietic cell transplantation. This first-in-human study will assess the safety and tolerability of CLBR001 + SWI019 and is designed to determine the maximum tolerated dose (MTD) or optimal SWI019 dose (OSD). Patients will be administered a single infusion of CLBR001 cells followed by cycles of SWI019. The study will also assess the pharmacokinetics and pharmacodynamics of CLBR001 + SWI019.
This phase II trial studies the side effects and best dose of anakinra and to see how well it works in reducing side effects (toxicity) associated with a CAR-T cell treatment called axicabtagene ciloleucel in patients with large B-cell lymphoma that has come back (relapsed) or has not responded to treatment (refractory). Anakinra is a drug typically used to treat rheumatoid arthritis but may also help in reducing CAR-T cell therapy toxicity. Giving anakinra in combination with axicabtagene ciloleucel may help control relapsed or refractory large B-cell lymphoma.
This pilot phase I trial studies the side effects of atezolizumab, gemcitabine, oxaliplatin, and rituximab and to see how well they work in treating patients with transformed diffuse large B-cell lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as gemcitabine and oxaliplatin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Rituximab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. Giving atezolizumab, gemcitabine, oxaliplatin, and rituximab may work better in treating patients with transformed diffuse large B-cell lymphoma.
This phase II trial studies how well pembrolizumab and external beam radiation therapy work in treating patients with non-Hodgkin lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving pembrolizumab and external beam radiation therapy may work better in treating patients with non-Hodgkin lymphoma than pembrolizumab alone.
This study is designed as a long-term follow-up study of participants who have receive genetically modified autologous CLBR001 CAR-T cells
This phase I trial studies the side effects and best dose of avelumab, utomilumab, rituximab, ibrutinib, and combination chemotherapy in treating patients with diffuse large B-cell lymphoma or mantle cell lymphoma that has come back or does not respond to treatment. Monoclonal antibodies, such as avelumab, utomilumab, and rituximab, may interfere with the ability of tumor cells to grow and spread. Ibrutinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as etoposide phosphate, carboplatin, and ifosfamide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving avelumab, utomilumab, rituximab, ibrutinib, and combination chemotherapy may work better in treating patients with diffuse large B-cell lymphoma or mantle cell lymphoma.
This is a single-arm, open-label, multicenter, dose escalation, phase 1-2 study of alisertib (MLN8237) administered in patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL)/transformed follicular lymphoma (TFL) treated with rituximab and vincristine. The study has three parts as follows: Phase 1, Part 1: Safety lead-in cohort to evaluate alisertib (MLN8237) and rituximab. Phase 1, Part 2: Dose escalation cohort to evaluate alisertib (MLN8237) + Rituximab + Vincristine and determine Phase 2 dose. Patients with other types of B-cell lymphoma (including mantle cell or Burkitt's lymphoma may enroll in Parts 1 and 2. Phase 2: Alisertib (MLN8237) + Rituximab + Vincristine in patients with relapsed or refractory DLBCL or TFL at recommended Phase 2 dose. Note that in 2013 Sponsor decision was taken to not initiate the phase 2 portion of the trial, which would have investigated the triplet at the recommended phase 2 dose identified in part 2. This decision was based on reprioritization within the company and not on any clinical or safety outcomes observed.
This phase II trial tests the effectiveness of golcadomide and rituximab as bridging treatment before chimeric antigen receptor (CAR) T-cell therapy in patients with aggressive B-cell non-Hodgkin lymphoma that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Patients that are able to receive CAR T-cell therapy have a potential for cure, however, many will not be qualified to receive therapy due to relapse. Bridging therapy is therapy intended to transition a patient from one therapy or medication to another or maintain their health or status until they are a candidate for a therapy or have decided on a therapy. Golcadomide may help block the formation, growth or spread of cancer cells. Rituximab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. Giving golcadomide and rituximab as bridging therapy before CAR T-cell therapy may kill more tumor cells and may improve the chance of proceeding to CAR T-cell therapy in patients with relapsed or refractory aggressive B-cell non-Hodgkin lymphoma.
This phase II trial tests the effectiveness of odronextamab given before chimeric antigen receptor T (CAR-T) cell therapy (bridging therapy) in patients with large B-cell lymphomas that have come back after a period of improvement (relapsed) or that have not responded to previous treatment (refractory). Odronextamab is a bispecific antibody that can bind to two different antigens at the same time. Odronextamab binds to CD3, a T-cell surface antigen, and CD20 (a tumor-associated antigen that is expressed on B-cells during most stages of B-cell development and is often overexpressed in B-cell cancers) and may interfere with the ability of cancer cells to grow and spread. Bridging therapy has been used to maintain disease control and to increase the chance of successful receipt of CAR-T cell therapy. However, bridging therapy is typically given after leukapheresis, which does not help prevent disease progression between the decision for CAR-T cell therapy and leukapheresis. Giving odronextamab as bridging therapy before leukapheresis may delay disease progression to allow leukapheresis and increase the likelihood of successful CAR-T cell therapy in patients with relapsed or refractory large B-cell lymphomas.
This phase Ib/II trial evaluates the safety, optimal dose, and efficacy of the combination of epcoritamab and ibrutinib in treating patients with aggressive B-cell non-Hodgkin lymphoma that has come back (relapsed) or responded to previous treatment (refractory). Epcoritamab, a bispecific antibody, binds to two different types of receptors (proteins present on the cell surface) at the same time. The two receptors that epcoritamab binds to are called CD3 and CD20. CD3 is found on T cells, which are important cells of the immune system that help fight cancer and infections. CD20 is found on the surface of most types of aggressive B-cell non-Hodgkin lymphoma cells. By binding to both CD3 and CD20, epcoritamab brings the two cells close together so the T cells can fight and kill the lymphoma B cells. Ibrutinib, a Bruton's tyrosine kinase (BTK) inhibitor, binds to a protein on B cells, a type of white blood cell from which the lymphoma developed. By doing this it decreases the ability of the lymphoma B cells to survive and grow. Ibrutinib may also improve the health (or fitness) of T cells thus making epcoritamab safer and/or more effective.
This phase I trial tests safety, side effects and best dose of B-cell activating factor receptor (BAFFR)-based chimeric antigen receptor T-cells, with fludarabine and cyclophosphamide lymphodepletion, for the treatment of patients with B-cell hematologic malignancies that has come back after a period of improvement (relapsed) or that does not respond to treatment (refractory). BAFFR-based chimeric antigen receptor T-cells is a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory so they will attack cancer cells. T cells are taken from a patient's blood. Then the gene for a special receptor that binds to a certain protein on the patient's cancer cells is added to the T cells in the laboratory. The special receptor is called a chimeric antigen receptor (CAR). Large numbers of the CAR T cells are grown in the laboratory and given to the patient by infusion for treatment of certain cancers. Giving chemotherapy, such as fludarabine and cyclophosphamide, helps ill cancer cells in the body and helps prepare the body to receive the BAFFR based chimeric antigen receptor T-cells. Giving BAFFR based chimeric antigen receptor T-cells with fludarabine and cyclophosphamide for lymphodepletion may work better for the treatment of patients with relapsed or refractory B-cell hematologic malignancies.
This phase II trial studies the safety and how well of loncastuximab tesirine when given together with mosunetuzumab works in treating patients with diffuse large B-cell lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Loncastuximab tesirine is a monoclonal antibody, loncastuximab, linked to a toxic agent called tesirine. Loncastuximab attaches to anti-CD19 cancer cells in a targeted way and delivers tesirine to kill them. Mosunetuzumab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Giving loncastuximab tesirine with mosunetuzumab may help treat patients with relapsed or refractory diffuse large B-cell lymphoma.
This phase II trial tests whether mosunetuzumab and/or polatuzumab vedotin helps benefit patients who have received chemotherapy (fludarabine and cyclophosphamide) followed by chimeric antigen receptor (CAR) T-cell therapy (tisagenlecleucel, axicabtagene ciloleucel, or lisocabtagene maraleucel) for diffuse large B-cell lymphoma that has come back (recurrent) or that does not respond to treatment (refractory) or grade IIIb follicular lymphoma. Mosunetuzumab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Polatuzumab vedotin is a monoclonal antibody, called polatuzumab, linked to a drug called vedotin. Polatuzumab is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, and delivers vedotin to kill them. Chemotherapy drugs, such as fludarabine and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. CAR T-cell therapy is a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory so they will attack cancer cells. T cells are taken from a patient's blood. Then the gene for a special receptor that binds to a certain protein on the patient's cancer cells is added to the T cells in the laboratory. The special receptor is called a chimeric antigen receptor. Large numbers of the CAR T cells are grown in the laboratory and given to the patient by infusion for treatment of certain cancers. Giving mosunetuzumab and/or polatuzumab vedotin after chemotherapy and CAR T-cell therapy may be more effective at controlling or shrinking the cancer than not giving them.
This is a two-arm, open-label, phase Ib single-site study with expansion cohorts testing the addition of mosunetuzumab to intensive platinum-based salvage chemotherapy in patients with relapsed/refractory aggressive B cell lymphoma. The hypothesis of this study is that mosunetuzumab can be safely combined with platinum-based salvage chemotherapy in this patient population, and that this approach may outperform chemoimmunotherapy approaches that instead incorporate rituximab retreatment. The enrolling physician's choice of the chemotherapy backbone will determine a patient's assigned study arm (Arm A = DHAX, Arm B = ICE). The two arms will accrue patients to phase Ib independently.
This phase I/II trial studies the side effects and best dose of venetoclax when given together with carmustine, etoposide, cytarabine, and melphalan before stem cell transplant in treating participants with non-Hodgkin lymphoma that has come back or does not respond to treatment. Drugs used in chemotherapy, such as venetoclax, carmustine, etoposide, cytarabine, and melphalan, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy before a stem cell transplant helps kill any cancer cells that are in the body and helps make room in the patient?s bone marrow for new blood-forming cells (stem cells) to grow.
The purpose of this research is to find the best dose of genetically modified T-cells, to study the safety of this treatment, and to see how well it works in treating patients with B cell non-Hodgkin lymphoma that has come back (relapsed) or did not respond to previous treatment (refractory).
This phase I trial studies the side effects and best dose of vorinostat when given together with pembrolizumab in treating patients with diffuse large B-cell lymphoma, follicular lymphoma, or Hodgkin lymphoma that has come back after a period of improvement or that does not respond to treatment. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer and may interfere with the ability of cancer cells to grow and spread. Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving vorinostat and pembrolizumab together may work better than pembrolizumab alone in treating patients with diffuse large B-cell lymphoma, follicular lymphoma, or Hodgkin lymphoma.
This study will be separated into 3 distinct phases designated as the Phase 1 study, Phase 2 pivotal study (Cohort 1 and Cohort 2), and Phase 2 safety management study (Cohort 3 and Cohort 4, Cohort 5 and Cohort 6). The primary objectives of this study are: * Phase 1 Study: Evaluate the safety of axicabtagene ciloleucel regimens * Phase 2 Pivotal Study; Evaluate the efficacy of axicabtagene ciloleucel * Phase 2 Safety Management Study: Assess the impact of prophylactic regimens or earlier interventions on the rate and severity of cytokine release syndrome (CRS) and neurologic toxicities Subjects who received an infusion of KTE-C19 will complete the remainder of the 15 year follow-up assessments in a separate long-term follow-up study, KT-US-982-5968.
This is a Phase 1/2, multi-center, open-label study evaluating the safety and efficacy of LYL314, a dual-targeting chimeric antigen receptor (CAR) targeting cluster of differentiation (CD)19 and CD20 in participants with aggressive large B-cell lymphoma.
Non-Hodgkin's lymphoma (NHL) is a cancer that arises from the transformation of normal B and T lymphocytes (white blood cells). The purpose of this study is to assess the safety, pharmacokinetics, and preliminary efficacy of ABBV-101 in adult participants in relapsed or refractory (R/R) non-Hodgkin's lymphomas: third line or later of treatment (3L) + chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), diffuse large b-cell lymphoma (DLBCL), non-germinal center B cell (GCB) DLBCL, mantle cell lymphoma (MCL), follicular lymphoma (FL), marginal zone lymphoma (MZL), Waldenström macroglobulinemia (WM), or transformed indolent NHL. Adverse events will be assessed. ABBV-101 is an investigational drug being developed for the treatment of NHL. This study will include a dose escalation phase to determine the maximum administered dose (MAD)/Maximum tolerated dose (MTD) of ABBV-101 and a dose expansion phase to determine the change in disease activity in participants with CLL or non-GCB DLBCL. Approximately 244 adult participants with multiple NHL subtypes will be enrolled in the study in sites world wide. In the Dose Escalation phase of the study participants will receive escalating oral doses of ABBV-101, until the MAD/MTD is determined, as part of the approximately 88 month study duration. In the dose expansion phase of the study participants receive oral ABBV-101, as part of the approximately 88 month study duration . There may be higher treatment burden for participants in this trial compared to their standard of care. Participants will attend regular visits during the study at an approved institution (hospital or clinic). The effect of the treatment will be frequently checked by medical assessments, blood tests, and side effects.
Autologous peripheral blood stem cell transplantation combined with high dose chemotherapy is the treatment of choice given to patients with diffuse large-B cell lymphoma (DLBCL) following relapse of the disease. Although many people are cured of their lymphoma with this therapy, the disease comes back in a certain proportion of patients. The purpose of this study is to test the safety and effectiveness of the monoclonal antibody, CT-011, in patients with DLBCL who have received autologous peripheral blood stem cell transplantation. All final eligible patients will receive an IV infusion of CT-011 on Day 1 (30 to 90 days post autologous PBSCT). Treatment will be repeated every 42 days for a total of three courses with treatment visits on Days 1, 43, and 85. Follow-up for safety and clinical outcome will be conducted throughout the study till 18 months post autologous PBSCT. Approximately 70 patients will participate in this study.
This phase Ib trial studies the effects of NKTR-255 in combination with chimeric antigen (CAR)-T cell therapy and to see how well they work in treating patients with large B-cell lymphoma that has come back (relapsed) or does not respond to treatment (refractory). NKTR-255 is an investigational IL-15 receptor agonist designed to boost the immune system's natural ability to fight cancer. T cells are infection fighting blood cells that can kill tumor cells. Lisocabtagene maraleucel is a CAR-T cell product that consists of genetically engineered T cells, modified to recognize CD19, a protein on the surface of cancer cells. These CD19-specific T cells may help the body's immune system identify and kill CD19-positive cancer cells. Giving NKTR-255 together with lisocabtagene maraleucel may work better in treating large B-cell lymphoma than either drug alone.