Treatment Trials

21 Clinical Trials for Various Conditions

Focus your search

ACTIVE_NOT_RECRUITING
Phase I Trial of the Selective Inhibitor of Nuclear Export, KPT-330, in Relapsed Childhood ALL and AML
Description

This research study involves participants who have acute lymphoblastic or acute myelogenous leukemia that has relapsed or has become resistant (or refractory) to standard therapies. This research study is evaluating a drug called KPT-330. Laboratory and other studies suggest that the study drug, KPT-330, may prevent leukemia cells from growing and may lead to the destruction of leukemia cells. It is thought that KPT-330 activates cellular processes that increase the death of leukemia cells. The main goal of this study is to evaluate the side effects of KPT-330 when it is administered to children and adolescents with relapsed or refractory leukemia.

RECRUITING
Venetoclax and CLAG-M for the Treatment of Acute Myeloid Leukemia and High-Grade Myeloid Neoplasms
Description

This phase I/II trial finds the best dose, side effects and how well giving venetoclax in combination with cladribine, cytarabine, granulocyte colony-stimulating factor, and mitoxantrone (CLAG-M) in treating patients with acute myeloid leukemia and high-grade myeloid neoplasms. Venetoclax may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Chemotherapy drugs, such as cladribine, cytarabine, and mitoxantrone, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving venetoclax with CLAG-M may kill more cancer cells.

ACTIVE_NOT_RECRUITING
Venetoclax in Combination with Decitabine and Cedazuridine for the Treatment of Relapsed or Refractory Acute Myeloid Leukemia
Description

This phase II trial studies the effects of venetoxlax in combination with decitabine and cedazuridine in treating patients with acute myeloid leukemia that has come back (relapsed) or does not respond to treatment (refractory). Chemotherapy drugs, such as venetoclax and decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Cedazuridine may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving venetoxlax in combination with decitabine and cedazuridine may help to control acute myeloid leukemia.

COMPLETED
Omacetaxine and Venetoclax for the Treatment of Relapsed or Refractory Acute Myeloid Leukemia or Myelodysplastic Syndrome Harboring Mutant RUNX1
Description

This phase Ib/II trial best dose, possible benefits and/or side effects of omacetaxine and venetoclax in treating patients with acute myeloid leukemia or myelodysplastic syndrome that has come back (recurrent) or does not respond to treatment (refractory) and have a genetic change RUNX1. Drugs used in chemotherapy, such as omacetaxine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Venetoclax may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Giving omacetaxine and venetoclax may help to control the disease.

TERMINATED
Fludarabine, Cytarabine, and Pegcrisantaspase for the Treament of Relapsed or Refractory Leukemia
Description

This phase Ib trial investigates the side effects and best dose of pegcrisantaspase when given together with fludarabine and cytarabine for the treatment of patients with leukemia that has come back (relapsed) or has not responded to treatment (refractory). Pegcrisantaspase may block the growth of cancer cells. Chemotherapy drugs, such as fludarabine and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving pegcrisantaspase in combination with fludarabine and cytarabine may work better in treating patients with leukemia compared to the combination of fludarabine and cytarabine.

RECRUITING
Cladribine, Idarubicin, Cytarabine, and Quizartinib in Treating Patients With Newly Diagnosed, Relapsed, or Refractory Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome
Description

This phase I/II trial studies the side effects and how well cladribine, idarubicin, cytarabine, and quizartinib work in treating patients with acute myeloid leukemia or high-risk myelodysplastic syndrome that is newly diagnosed, has come back (relapsed), or does not respond to treatment (refractory). Drugs used in chemotherapy, such as cladribine, idarubicin, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Quizartinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving quizartinib with cladribine, idarubicin, and cytarabine may help to control acute myeloid leukemia or high-risk myelodysplastic syndrome.

ACTIVE_NOT_RECRUITING
Venetoclax and Decitabine in Treating Participants With Relapsed/Refractory Acute Myeloid Leukemia or Relapsed High-Risk Myelodysplastic Syndrome
Description

This phase II trial studies how well venetoclax and decitabine work in treating participants with acute myeloid leukemia that has come back or does not respond to treatment, or with high-risk myelodysplastic syndrome that has come back. Drugs used in chemotherapy, such as venetoclax and decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.

SUSPENDED
HA-1 T TCR T Cell Immunotherapy for the Treatment of Patients With Relapsed or Refractory Acute Leukemia After Donor Stem Cell Transplant
Description

This phase I trial studies the side effects and best dose of CD4+ and CD8+ HA-1 T cell receptor (TCR) (HA-1 T TCR) T cells in treating patients with acute leukemia that persists, has come back (recurrent) or does not respond to treatment (refractory) following donor stem cell transplant. T cell receptor is a special protein on T cells that helps them recognize proteins on other cells including leukemia. HA-1 is a protein that is present on the surface of some peoples' blood cells, including leukemia. HA-1 T cell immunotherapy enables genes to be added to the donor cells to make them recognize HA-1 markers on leukemia cells.

TERMINATED
Bortezomib and Vorinostat in Younger Patients With Refractory or Relapsed MLL Rearranged Hematologic Malignancies
Description

This study will test the safety and effectiveness of adding bortezomib and vorinostat to other chemotherapy drugs commonly used to treat relapsed or refractory leukemia. Both drugs have been approved by the Food and Drug Administration (FDA) to treat other cancers in adults, but they have not yet been approved tor treatment younger patients with leukemia. PRIMARY OBJECTIVE * To estimate the overall response rate of patients with MLL rearranged (MLLr) hematologic malignancies receiving bortezomib and vorinostat in combination with a chemotherapy backbone. SECONDARY OBJECTIVES * Estimate event-free and overall-survival. * Describe toxicities experienced by participants during treatment. OTHER PRESPECIFIED OBJECTIVES * To identify all genomic lesions by comprehensive whole genome, exome and transcriptome sequencing on all patients. * To compare minimal residual disease (MRD) results by three modalities: flow cytometry, polymerase chain reaction (PCR) and deep sequencing.

TERMINATED
Lirilumab and Azacitidine in Treating Patients With Refractory or Relapsed Acute Myeloid Leukemia
Description

This phase II trial studies the side effects lirilumab and azacitidine and to see how well they work in treating patients with acute myeloid leukemia that has not responded to treatment or has returned after a period of improvement. Monoclonal antibodies, such as lirilumab, may interfere with the ability of cancer cells to grow and spread. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving lirilumab with azacitidine may be an effective treatment for relapsed or refractory acute myeloid leukemia.

COMPLETED
Nivolumab and Azacitidine With or Without Ipilimumab in Treating Patients With Refractory/Relapsed or Newly Diagnosed Acute Myeloid Leukemia
Description

This will be a phase II, open-label, non-randomized study with a safety lead-in phase. There are 3 Arms in this study each with 2 parts. If you are eligible, you will be assigned to an Arm and a part when you join the study. In each arm, you will receive a different combination of study drugs: Arm 1: nivolumab and azacitidine, Ih Arm 2: nivolumab, azacitidine, and ipilimumab, Arm 3: nivolumab, azacitidine, and venetoclax. There are 2 parts in each arm: Part A (dose escalation) and Part B (dose expansion). The goal of Part A of this clinical research study is to find the highest tolerable dose of the study drugs (nivolumab, azacitidine, ipilimumab, and/or venetoclax) that can be given to patients with AML. The goal of Part B of this study is to learn if the dose found in Part A can help to control AML.

ACTIVE_NOT_RECRUITING
Genetically Modified T-cell Immunotherapy in Treating Patients With Relapsed/Refractory Acute Myeloid Leukemia and Persistent/Recurrent Blastic Plasmacytoid Dendritic Cell Neoplasm
Description

This phase I trial studies the side effects and the best dose of genetically modified T-cells after lymphodepleting chemotherapy in treating patients with acute myeloid leukemia or blastic plasmacytoid dendritic cell neoplasm that has returned after a period of improvement or has not responded to previous treatment. An immune cell is a type of blood cell that can recognize and kill abnormal cells in the body. The immune cell product will be made from patient or patient's donor (related or unrelated) blood cells. The immune cells are changed by inserting additional pieces of deoxyribonucleic acid (DNA) (genetic material) into the cell to make it recognize and kill cancer cells. Placing a modified gene into white blood cells may help the body build an immune response to kill cancer cells.

COMPLETED
Clofarabine, Idarubicin, Cytarabine, Vincristine Sulfate, and Dexamethasone in Treating Patients With Newly Diagnosed or Relapsed Mixed Phenotype Acute Leukemia
Description

This phase II trial studies how well clofarabine, idarubicin, cytarabine, vincristine sulfate, and dexamethasone work in treating patients with mixed phenotype acute leukemia that is newly diagnosed or has returned after a period of improvement (relapsed). Drugs used in chemotherapy, such as clofarabine, idarubicin, cytarabine, vincristine sulfate, and dexamethasone, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.

COMPLETED
Filgrastim, Cladribine, Cytarabine, and Mitoxantrone Hydrochloride in Treating Patients With Newly Diagnosed or Relapsed/Refractory Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndromes
Description

This phase I/II trial studies the side effects and best dose of mitoxantrone hydrochloride when given together with filgrastim, cladribine, and cytarabine and to see how well they work in treating patients with acute myeloid leukemia or high-risk myelodysplastic syndromes that is newly diagnosed, has returned, or does not respond to treatment. Drugs used in chemotherapy, such as filgrastim, cladribine, cytarabine, and mitoxantrone hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.

COMPLETED
Entinostat and Clofarabine in Treating Patients With Newly Diagnosed, Relapsed, or Refractory Poor-Risk Acute Lymphoblastic Leukemia or Bilineage/Biphenotypic Leukemia
Description

This phase I trial studies the side effects and best dose of entinostat when given together with clofarabine in treating patients with newly diagnosed, relapsed, or refractory poor-risk acute lymphoblastic leukemia or bilineage/biphenotypic leukemia. Entinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as clofarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving entinostat with clofarabine may kill more cancer cells.

COMPLETED
Sorafenib in Combination With Cytarabine and Clofarabine in Patients With Refractory or Relapsed Hematologic Malignancies
Description

This is a Phase I study that determines a tolerable combination of sorafenib, when given sequentially with cytarabine and clofarabine and determines the feasibility of administering this drug combination in patients with relapsed or refractory hematologic malignancies including acute myeloid leukemia (AML), acute promyelocytic leukemia (APL), acute lymphoblastic leukemia (ALL), infantile leukemia (both either AML and/or ALL). AML with prior myelodysplastic syndrome (MDS), myelodysplastic/myeloproliferative neoplasms, and biphenotypic leukemia.

RECRUITING
Allo HSCT Using RIC and PTCy for Hematological Diseases
Description

This is a Phase II study following subjects proceeding with our Institutional non-myeloablative cyclophosphamide/ fludarabine/total body irradiation (TBI) preparative regimen followed by a related, unrelated, or partially matched family donor stem cell infusion using post-transplant cyclophosphamide (PTCy), sirolimus and MMF GVHD prophylaxis.

COMPLETED
Reduced Intensity Flu/Mel/TBI Conditioning for HAPLO HCT Patients With Hematologic Malignancies
Description

This is a single arm, phase II trial of HLA-haploidentical related hematopoietic cells transplant (Haplo-HCT) using reduced intensity conditioning (fludarabine and melphalan and total body irradiation). Peripheral blood is the donor graft source. This study is designed to estimate disease-free survival (DFS) at 18 months post-transplant.

ACTIVE_NOT_RECRUITING
Trial Evaluating MGTA-456 in Patients With High-Risk Malignancy
Description

This is an single arm, open label, interventional phase II trial evaluating the efficacy of umbilical cord blood (UCB) hematopoietic stem and progenitor cells (HSPC) expanded in culture with stimulatory cytokines (SCF, Flt-3L, IL-6 and thromopoietin) on lympho-hematopoietic recovery. Patients will receive a uniform myeloablative conditioning and post-transplant immunoprophylaxis.

ACTIVE_NOT_RECRUITING
UCB Transplant for Hematological Diseases Using a Non Myeloablative Prep
Description

This is a phase II trial using a non-myeloablative cyclophosphamide/ fludarabine/total body irradiation (TBI) preparative regimen with modifications based on factors including diagnosis, disease status, and prior treatment. Single or double unit selected according to current University of Minnesota umbilical cord blood graft selection algorithm.

COMPLETED
Reduced Intensity (RIC) Conditioning And Transplantation of HLA-Haplo-HCT
Description

This is a single institution phase II study of a reduced intensity conditioning (RIC) followed by a haploidentical hematopoietic cell transplant (haplo-HCT) in persons with diagnosis of hematologic malignancy. Conditioning will consists of fludarabine, cyclophosphamide, melphalan and total body irradiation (TBI) preparative regimen with a melphalan dose reduction for patients ≥55 years old and those with HCT Comorbidity Index (CI) \>3. This study uses a two-stage phase II design with accrual goal of 84 patients, using 28 patients separately for arms A, C and D