71 Clinical Trials for Various Conditions
This Phase 1, multicenter, open-label, dose escalation study is designed to assess the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and preliminary clinical activity of FHD-286 administered orally as monotherapy or combination therapy, in subjects with advanced hematologic malignancies.
This phase II trial studies how well azacitidine works in treating patients with relapsed myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia (CMML), or acute myeloid leukemia (AML) who have undergone stem cell transplant. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing.
This is an open-label, non-randomized, Phase 1 study to determine the safety and tolerability of NC525. This study will also assess the clinical benefit in subjects with advanced myeloid neoplasms.
The purpose of this study is to evaluate the safety, tolerability, pharmacokinetics, pharmacodynamics, and recommended Phase 2 dose (RP2D) of MK-0482. There are 2 parts of this study. Part 1 is a dose escalation which will follow an accelerated titration design (ATD) for participants with relapsed/refractory (R/R) AML or CMML. Part 2 is a dose expansion for participants with R/R AML.
This trial studies the side effects of recombinant EphB4-HSA fusion protein when given together with azacitidine or decitabine in treating patients with myelodysplastic syndrome, chronic myelomonocytic leukemia, or acute myeloid leukemia that has come back or has not responded to previous treatment with a hypomethylating agent. Recombinant EphB4-HSA fusion protein may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Hypomethylating agents, such as azacitidine and decitabine, slow down genes that promote cell growth and can kill cells that are dividing rapidly. Giving recombinant EphB4-HSA fusion protein together with azacitidine or decitabine may work better in treating patients with myelodysplastic syndrome, chronic myelomonocytic leukemia, or acute myeloid leukemia.
This phase II trial studies the effect of ascorbic acid and combination chemotherapy in treating patients with lymphoma that has come back (recurrent) or does not respond to therapy (refractory), clonal cytopenia of undetermined significance and chronic myelomonocytic leukemia (CMML). Ascorbic acid may make cancer cells more sensitive to chemotherapy. Drugs used in chemotherapy, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ascorbic acid and combination chemotherapy may kill more cancer cells.
This is a Phase I study designed to determine the MTD and assess the toxicity associated with clofarabine followed by fractionated cyclophosphamide in patients \> 1 year of age or \< 21 years of age with relapsed or refractory acute leukemias. There will be 25 to 35 patients enrolled. Cohorts of 3 to 6 patients each will receive escalated doses of clofarabine followed by fractionated cyclophosphamide until the MTD is reached. There will be no intra-patient dose escalation. Single-agent cyclophosphamide will be administered by 2-hour IVI on Day 0 of cycle 1. On Days 1, 2, and 3 and Days 8, 9, and 10 clofarabine will be administered by IVI 2 hours before each dose of cyclophosphamide (see the treatment schema below). A cycle is defined as 28 days.
This is a Phase 1, multi-center, open-label study with a dose-escalation phase (Phase 1a) and a cohort expansion phase (Phase 1b), to evaluate the safety, tolerability, and PK profile of LP-118 under a once daily oral dosing schedule in up to 100 subjects.
This phase I/II trial studies the effect of DS-1594b with or without azacitidine, venetoclax, or mini-HCVD in treating patients with acute myeloid leukemia or acute lymphoblastic leukemia that has come back (recurrent) or not responded to treatment (refractory). Chemotherapy drugs, such as azacitidine, venetoclax, and mini-HCVD, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. DS-1594b may inhibit specific protein bindings that cause blood cancer. Giving DS-1594b, azacitidine, and venetoclax, or mini-HCVD may work better in treating patients with acute myeloid leukemia or acute lymphoblastic leukemia.
This is a Phase 1, 2-part, open-label, multicenter, first-in-human (FIH) study to assess the safety, pharmacokinetics (PK), pharmacodynamics (PD), and preliminary clinical activity of TAS1553 administered orally to participants ≥18 years of age with relapsed or refractory (R/R) acute myeloid leukemia (AML) or other myeloid neoplasms where approved therapies have failed or for whom known life-prolonging therapies are not available. The AML population includes de novo AML, secondary AML, and myelodysplastic syndrome (MDS)-transformed into AML. Other myeloid neoplasms include accelerated phase myeloproliferative neoplasms (MPN), and chronic or accelerated phase MPN-unclassifiable (MPN-U) and MDS-MPN. Blast crisis phase of MPNs are considered secondary AML and will be included in the AML cohort. Part 1 is a multicenter, sequential group treatment feasibility study with 1 treatment arm and no masking (dose escalation). Part 2 is a multicenter, two-stage, multiple group, dose confirmation study with 1 treatment arm and no masking (exploratory dose expansion).
This phase I/II trial investigates the side effects and best dose of venetoclax when given together with azacitidine and to see how well it works in treating patients with high-risk myelodysplastic syndrome or chronic myelomonocytic leukemia that has come back (relapsed) or has not responded to treatment (refractory). Venetoclax may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving venetoclax and azacitidine together may help to control myelodysplastic syndrome or chronic myelomonocytic leukemia.
This phase II trial investigates how well azacitidine, venetoclax, and trametinib work in treating patients with acute myeloid leukemia or higher-risk myelodysplastic syndrome that has come back (relapsed) or has not responded to treatment (refractory). Chemotherapy drugs, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Venetoclax and trametinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. The goal of this study is learn if the combination of azacitidine, venetoclax, and trametinib can help to control acute myeloid leukemia or myelodysplastic syndrome.
This phase I trial studies the best dose of total body irradiation when given with cladribine, cytarabine, filgrastim, and mitoxantrone (CLAG-M) or idarubicin, fludarabine, cytarabine and filgrastim (FLAG-Ida) chemotherapy reduced-intensity conditioning regimen before stem cell transplant in treating patients with acute myeloid leukemia, myelodysplastic syndrome, or chronic myelomonocytic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Giving chemotherapy and total body irradiation before a donor peripheral blood stem cell transplant helps kill cancer cells in the body and helps make room in the patient's bone marrow for new blood-forming cells (stem cells) to grow. When the healthy stem cells from a donor are infused into a patient, they may help the patient's bone marrow make more healthy cells and platelets and may help destroy any remaining cancer cells. Sometimes the transplanted cells from a donor can attack the body's normal cells called graft versus host disease. Giving cyclophosphamide, cyclosporine, and mycophenolate mofetil after the transplant may stop this from happening.
To evaluate the safety, pharmacokinetics (PK), and efficacy of ASTX660 when given alone and in combination with ASTX727 in participants with relapsed/refractory (R/R) acute myeloid leukemia (AML). The duration of the study is expected to be approximately 30 months.
This phase I trial studies best dose and side effects of liposome-encapsulated daunorubicin-cytarabine (CPX-351) and how well it works in treating patients with high risk myelodysplastic syndrome or chronic myelomonocytic leukemia that has come back or has not responded to treatment. Drugs used in chemotherapy, such as liposome-encapsulated daunorubicin-cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
The main purpose of this study is to identify a safe and potentially effective dose of tuspetinib to be used in future studies in study participants diagnosed with acute myeloid leukemia (AML), myelodysplastic syndromes with increased blasts grade 2 (MDS-IB2), or chronic myelomonocytic leukemia (CMML) that is relapsed or refractory after at least one line of prior therapy, or in study participants with newly diagnosed AML. Tuspetinib will be administered as a single agent or in combination with other drugs (venetoclax or venetoclax plus azacitidine), as specified for each part of the study.
This phase II trial studies the side effects and how well liposome-encapsulated daunorubicin-cytarabine and gemtuzumab ozogamicin work in treating patients with acute myeloid leukemia that has come back (relapsed) or that does not respond to treatment (refractory) or high risk myelodysplastic syndrome. Drugs used in chemotherapy, such as liposome-encapsulated daunorubicin-cytarabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Gemtuzumab ozogamicin is a monoclonal antibody, called gemtuzumab, linked to a toxic agent called calicheamicin. Gemtuzumab ozogamicin attached to CD33 positive cancer cells in a targeted way and delivers calicheamicin to kill them. Giving liposome-encapsulated daunorubicin-cytarabine and gemtuzumab ozogamicin together may be an effective treatment for relapsed or refractory acute myeloid leukemia or high risk myelodysplastic syndrome.
This phase I/II trial studies the side effects and best dose of a radioactive agent linked to an antibody (211At-BC8-B10) followed by donor stem cell transplant in treating patients with high-risk acute leukemia or myelodysplastic syndrome that has come back (recurrent) or isn't responding to treatment (refractory). 211At-BC8-B10 is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Giving chemotherapy and total body irradiation before a stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient, they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can attack the body's normal cells, called graft versus host disease. Giving cyclophosphamide, mycophenolate mofetil, and tacrolimus after a transplant may stop this from happening.
This phase II trial studies how well venetoclax and decitabine work in treating participants with acute myeloid leukemia that has come back or does not respond to treatment, or with high-risk myelodysplastic syndrome that has come back. Drugs used in chemotherapy, such as venetoclax and decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
This phase I trial studies the side effects and best dose of CD4+ and CD8+ HA-1 T cell receptor (TCR) (HA-1 T TCR) T cells in treating patients with acute leukemia that persists, has come back (recurrent) or does not respond to treatment (refractory) following donor stem cell transplant. T cell receptor is a special protein on T cells that helps them recognize proteins on other cells including leukemia. HA-1 is a protein that is present on the surface of some peoples' blood cells, including leukemia. HA-1 T cell immunotherapy enables genes to be added to the donor cells to make them recognize HA-1 markers on leukemia cells.
This phase I/II trial studies the side effects and best dose of guadecitabine when given together with atezolizumab and to see how well they work in treating patients with myelodysplastic syndrome or chronic myelomonocytic leukemia that has spread to other places in the body and has come back or does not respond to treatment. Guadecitabine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as atezolizumab, may interfere with the ability of cancer cells to grow and spread. Giving guadecitabine and atezolizumab may work better in treating patients with myelodysplastic syndrome or chronic myelomonocytic leukemia.
This clinical trial studies how well early stem cell transplantation works in treating patients with high-grade myeloid neoplasms that has come back after a period of improvement or does not respond to treatment. Drugs used in chemotherapy, such as filgrastim, cladribine, cytarabine and mitoxantrone hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy before a donor peripheral blood cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The donated stem cells may also replace the patient's immune cells and help destroy any remaining cancer cells. Early stem cell transplantation may result in more successful treatment for patients with high-grade myeloid neoplasms.
The purpose of this study is to evaluate the use of IRX5183 in 1) patients with relapsed and/or refractory AML and 2) patients with high-risk MDS or chronic myelomonocytic leukemia (CMML).
This phase I trial studies the side effects and determine the best dose of prexasertib (LY2606368) when given together with cytarabine and fludarabine in patients with acute myeloid leukemia or high-risk myelodysplastic syndrome that has returned after a period of improvement or no longer responds to treatment. Prexasertib (LY2606368) may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cytarabine and fludarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving prexasertib (LY2606368) together with cytarabine and fludarabine may work better in treating patients with acute myeloid leukemia or myelodysplastic syndrome.
This will be a phase II, open-label, non-randomized study with a safety lead-in phase. There are 3 Arms in this study each with 2 parts. If you are eligible, you will be assigned to an Arm and a part when you join the study. In each arm, you will receive a different combination of study drugs: Arm 1: nivolumab and azacitidine, Ih Arm 2: nivolumab, azacitidine, and ipilimumab, Arm 3: nivolumab, azacitidine, and venetoclax. There are 2 parts in each arm: Part A (dose escalation) and Part B (dose expansion). The goal of Part A of this clinical research study is to find the highest tolerable dose of the study drugs (nivolumab, azacitidine, ipilimumab, and/or venetoclax) that can be given to patients with AML. The goal of Part B of this study is to learn if the dose found in Part A can help to control AML.
A Phase 1/2a Dose Escalation Study of FF-10501-01 in Patients with Relapsed or Refractory Hematological Malignancies to determine the safety and tolerability. A total of 6 cohorts will be enrolled in Phase 1 to establish the MTD. A total of 20 subjects with MDS/CMML treated at the RP2D are planned, including MDS/CMML subjects treated at the RP2D in Phase 1.
This phase I/II trial studies the side effects and best dose of quizartinib when given in combination with azacitidine or cytarabine in treating patients with acute myeloid leukemia or myelodysplastic syndrome that have come back (relapsed) or are not responding to treatment (refractory). Quizartinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as azacitidine and cytarabine work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving quizartinib with azacitidine or cytarabine may work better in patients with acute myeloid leukemia or myelodysplastic syndrome.
This clinical trial uses a laboratory test called a high throughput sensitivity assay in planning treatment for patients with relapsed or refractory acute myeloid leukemia. The aim is to try to identify drugs that may be effective in killing leukemia cells for those patients who will not be cured with conventional chemotherapy. This assay will test multiple drugs simultaneously against a patient's own donated blood sample. The goal is to use this laboratory assay to best match a drug to a patient's disease.
This phase I trial studies the side effects and best dose of ipilimumab and how well it works in treating patients with high-risk myelodysplastic syndrome or acute myeloid leukemia that has come back or no longer responds to treatment. Monoclonal antibodies, such as ipilimumab, may interfere with the ability of cancer cells to grow and spread.
This pilot phase II trial studies how well erlotinib hydrochloride works in treating patients with relapsed or refractory acute myeloid leukemia. Erlotinib hydrochloride may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.