Treatment Trials

21 Clinical Trials for Various Conditions

Focus your search

WITHDRAWN
Phase 1 Study Evaluating ZEN003365 in Relapsed/Refractory Lymphoproliferative Malignancies or Relapsed/Refractory AML
Description

The purpose of this study is to determine safety, tolerability, dose limiting toxicities (DLT) and maximum tolerated dose (MTD) of ZEN003365 in patients with relapsed/refractory lymphoproliferative malignancies (LPM) or relapsed/refractory acute myeloid leukemia (AML).

COMPLETED
Study of Pralatrexate & Gemcitabine With B12 & Folic Acid to Treat Relapsed/Refractory Lymphoproliferative Malignancies
Description

This study is for patients with lymphoproliferative malignancies that have progressed after receiving a previous treatment (relapsed) or are no longer responding to treatment (refractory). To be in this study, patients must have certain types of Hodgkin's lymphoma (HL), peripheral T-cell lymphoma (PTCL), or B-cell lymphoma, including Waldenstrom's macroglobulinemia. This study is being done to find doses of the combination of pralatrexate and gemcitabine with vitamin B12 and folic acid that can be safely given to patients with these types of lymphoma and explore the effectiveness of the treatment.

RECRUITING
Pacritinib in Relapsed/Refractory T-cell Lymphoproliferative Neoplasms
Description

The main purpose of this study is to determine the effectiveness of the study drug pacritinib in people with relapsed or refractory lymphoproliferative disorders.

TERMINATED
Irradiated Donor Lymphocytes and Rituximab in Treating Patients With Relapsed or Refractory Lymphoproliferative Disease
Description

RATIONALE: When irradiated lymphocytes from a donor are infused into the patient they may help the patient's immune system kill cancer cells. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving irradiated donor lymphocytes together with rituximab may kill more cancer cells. PURPOSE: This clinical trial is studying the side effects and how well giving irradiated donor lymphocytes together with rituximab works in treating patients with relapsed or refractory lymphoproliferative disease.

TERMINATED
A Clinical Study of ONCT-808 in Subjects With Relapsed or Refractory B-Cell Malignancies
Description

This is a Phase 1/2 study to investigate the safety and efficacy of the CAR-T therapy, ONCT-808, in patients with relapsed/refractory (R/R) aggressive B cell malignancies.

COMPLETED
Interleukin-15 (IL-5) in Combination With Avelumab (Bavencio) in Relapsed/Refractory Mature T-cell Malignancies
Description

Background: Some T-cell lymphomas and leukemias do not respond to standard treatment. Researchers hope to develop a treatment that works better than current treatments. Objective: To test if interleukin (IL-5) combined with avelumab is safe and effective for treating certain cancers. Eligibility: People ages 18 and older with relapsed T-cell leukemias and lymphomas for which no standard treatment exists or standard treatment has failed Design: Participants will be screened with: * Medical history * Physical exam * Blood, urine, heart, and lung tests * Possible tumor biopsy * Bone marrow biopsy: A small needle will be inserted into the hipbone to take out a small amount of marrow. * Computed tomography (CT) or positron emission tomography (PET) scans and magnetic resonance imaging (MRI): Participants will lie in a machine that takes pictures of the body. Participants will get the study drugs for 6 cycles of 28 days each. They will have a midline catheter inserted: A tube will be inserted into a vein in the upper chest. They will get Interleukin-15 (IL-5) as a constant infusion over the first 5 days of every cycle. They will get avelumab on days 8 and 22 of each cycle. They will be hospitalized for the first week of the first cycle. Participants will have tests throughout the study: * Blood and urine tests * Another tumor biopsy if their disease gets worse * Scans every 8 weeks * Possible repeat MRI * Another bone marrow biopsy at the end of treatment, if there was lymphoma in the bone marrow before treatment, and they responded to treatment everywhere else. After they finish treatment, participants will have visits every 60 days for the first 6 months. Then visits will be every 90 days for 2 years, and then every 6 months for 2 years. Visits will include blood tests and may include scans.

ACTIVE_NOT_RECRUITING
A Study of Venetoclax and Rituximab/Hyaluronidase Human in Relapsed/Refractory CLL
Description

This is an open-label, multicenter, Phase II study to investigate the efficacy and safety of venetoclax in combination with Rituximab/hyaluronidase human in participants with relapsed or refractory chronic lymphocytic leukemia (CLL).

RECRUITING
Study of CD30 CAR for Relapsed/Refractory CD30+ HL and CD30+ NHL
Description

The body has different ways of fighting infection and disease. No single way seems perfect for fighting cancer. This research study combines two different ways of fighting disease: antibodies and T cells. Antibodies are proteins that protect the body from disease caused by bacteria or toxic substances. Antibodies work by binding those bacteria or substances, which stops them from growing and causing bad effects. T cells, also called T lymphocytes, are special infection-fighting blood cells that can kill other cells, including tumor cells or cells that are infected. Both antibodies and T cells have been used to treat patients with cancers. They both have shown promise, but neither alone has been sufficient to cure most patients. This study is designed to combine both T cells and antibodies to create a more effective treatment called autologous T lymphocyte chimeric antigen receptor cells targeted against the CD30 antigen (ATLCAR.CD30) administration. In previous studies, it has been shown that a new gene can be put into T cells that will increase their ability to recognize and kill cancer cells. The new gene that is put in the T cells in this study makes an antibody called anti-CD30. This antibody sticks to lymphoma cells because of a substance on the outside of the cells called CD30. Anti-CD30 antibodies have been used to treat people with lymphoma, but have not been strong enough to cure most patients. For this study, the anti-CD30 antibody has been changed so that instead of floating free in the blood it is now joined to the T cells. When an antibody is joined to a T cell in this way it is called a chimeric receptor. These CD30 chimeric (combination) receptor-activated T cells seem to kill some of the tumor, but they do not last very long in the body and so their chances of fighting the cancer are unknown. The purpose of this research study is to establish a safe dose of ATLCAR.CD30 cells to infuse after lymphodepleting chemotherapy and to estimate the number patients whose cancer does not progress for two years after ATLCAR.CD30 administration. This study will also look at other effects of ATLCAR.CD30 cells, including their effect on the patient's cancer.

COMPLETED
Clinical Study With Blinatumomab in Pediatric and Adolescent Patients With Relapsed/Refractory B-precursor Acute Lymphoblastic Leukemia
Description

The purpose of this study is to determine the dose of the bispecific T cell engager blinatumomab (MT103) in pediatric and adolescent patients with relapsed/refractory acute lymphoblastic leukemia (ALL) and to assess whether this dose of blinatumomab is effective.

COMPLETED
Study of RAD001 in Patients With Relapsed/Refractory Hodgkin Lymphoma That Has Progressed After High-dose Chemotherapy and Autologous Stem Cell Transplant and/or After Gemcitabine- or Vinorelbine- or Vinblastine-based Treatment.
Description

This study will assess RAD001 in patients with refractory or relapsed Hodgkin Lymphoma that has progressed after high-dose chemotherapy and Autologous Stem cell transplant and/or after gemcitabine- or vinorelbine- or vinblastine-based treatment.

COMPLETED
A Phase I Trial of ZIO-101 in Hematologic Cancers
Description

This study uses a new investigational (not yet approved by the FDA for widespread use) drug called ZIO-101, an organic arsenical. You must be diagnosed to have relapsed/refractory leukemia or lymphoma (blood cancer) and have tried other standard therapies. This study is designed to determine whether ZIO-101 may be given safely. The study will also test whether ZIO-101 helps to treat blood cancer. We anticipate that approximately 22 to 35 patients will take part in this study. Arsenic has been used as a medicinal agent for centuries in many different cultures. Most recently in the United States, an inorganic arsenic compound was approved by the FDA for the treatment of patients with relapsed acute promyelocytic leukemia (APL). However, use of inorganic arsenic is limited by a narrow range of activity and systemic toxicity, most notably of the cardiac system. ZIO-101 is an organic arsenic derivative. In vitro testing in both the National Cancer Institute (NCI) cancer cell panel and in vivo testing in a leukemia animal model demonstrated substantial activity of SGLU against hematologic cancers. In vitro testing of SGLU using the NCI human cancer cell panel also detected activity against lung, colon and brain cancers, melanoma, and ovary and kidney cancers. Moderate activity was seen against breast and prostate cancers cells. Data suggest that organic arsenic generates reactive oxygen species in the cells to induce apoptosis and cell cycle arrest.

RECRUITING
CA-4948-101: Open-Label, Dose Escalation and Expansion Trial of Emavusertib (CA-4948) in Relapsed or Refractory Primary Central Nervous System Lymphoma (R/R PCNSL)
Description

This is a multi-center, open-label study to evaluate the safety, pharmacokinetics (PK), and anti-cancer activity of oral administration of emavusertib alone or in combination with ibrutinib in adult participants with relapsed or refractory (R/R) hematologic malignancies. This trial will be completed in four parts. In Part A1, emavusertib will be evaluated first in a dose escalating monotherapy setting to establish the safety and tolerability (complete). In Part A2, emavusertib will be evaluated in combination with ibrutinib at 560 milligrams (mg) once daily (QD) or 420 mg QD as indicated by disease (Part A2 complete). Part B will comprise 2 cohorts to assess safety and efficacy of emavusertib in combination with ibrutinib in participants with R/R primary central nervous system lymphoma (PCNSL) who have directly progressed on a bruton tyrosine kinase inhibitor (BTKi). In this part of the study, emavusertib will be dosed at 100 mg or 200 mg twice daily (BID) in combination with ibrutinib in 28-day treatment cycles. Part C will comprise 3 treatment arms in the second-line setting to assess the efficacy and safety of emavusertib monotherapy, ibrutinib monotherapy, and emavusertib in combination with ibrutinib in participants with R/R PCNSL who are naïve to BTKi treatment. In this part of the study, eligible second-line participants with R/R PCNSL who are naïve to BTKi treatment will be randomized 1:1:1 to 1 of 3 treatment arms: (1) emavusertib 200 mg BID, (2) ibrutinib 560 mg QD, or (3) emavusertib 200 mg BID in combination with ibrutinib 560 mg QD.

RECRUITING
Loncastuximab Tesirine for the Treatment of Relapsed or Refractory B-Cell Malignancies
Description

This phase II trial tests whether loncastuximab tesirine works to shrink tumors in patients with B-cell malignancies that have come back (relapsed) or does not respond to treatment (refractory). Loncastuximab tesirine is a monoclonal antibody, called loncastuximab, linked to a chemotherapy drug, called tesirine. Loncastuximab is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, known as CD19 receptors, and delivers tesirine to kill them.

COMPLETED
A Safety Trial of Lisocabtagene Maraleucel (JCAR017) for Relapsed and Refractory (R/R) B-cell Non-Hodgkin Lymphoma (NHL) in the Outpatient Setting (TRANSCEND-OUTREACH-007)
Description

This is an open-label, multicenter, Phase 2 study to determine the safety, PK, and efficacy of lisocabtagene maraleucel (JCAR017) in subjects who have relapsed from, or are refractory to, two lines of immunochemotherapy for aggressive B-cell non-Hodgkin lymphoma (NHL) in the outpatient setting. Subjects will receive treatment with JCAR017 and will be followed for up to 2 years.

ACTIVE_NOT_RECRUITING
A Study of Nemtabrutinib (MK-1026) in Participants With Relapsed or Refractory Hematologic Malignancies (ARQ 531-101/MK-1026-001)
Description

This study aims to evaluate the safety, tolerability, pharmacodynamic, and pharmacokinetic (PK) of nemtabrutinib (formerly ARQ 531) tablets in selected participants with relapsed or refractory hematologic malignancies. No formal hypothesis testing will be performed for this study.

COMPLETED
Study of Betalutin for Treatment of Relapsed or Refractory Non-Hodgkin Lymphoma (LYMRIT-37-05)
Description

This study is a phase 1, dose finding, open-label study in patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL). This is a dose escalating study to define the maximum tolerated dose (MTD) of lutetium (177Lu)-lilotomab satetraxetan (Betalutin®) in DLBCL patients who are not eligible for autologous stem cell transplant. The study will also assess safety and tolerability, pharmacokinetics, biodistribution and efficacy.

WITHDRAWN
Phenylbutyrate and Valganciclovir in Treating Patients With Relapsed or Refractory Epstein-Barr Virus-Positive Cancer
Description

RATIONALE: The Epstein-Barr virus can cause cancer and lymphoproliferative disorders. Valganciclovir is an antiviral drug that acts against the Epstein-Barr virus. Phenylbutyrate may make cells infected with Epstein-Barr virus more sensitive to valganciclovir. Giving phenylbutyrate together with valganciclovir may block the growth of Epstein-Barr virus-infected cells and kill more cancer cells. PURPOSE: This phase II trial is studying how well giving phenylbutyrate together with valganciclovir works in treating patients with relapsed or refractory Epstein-Barr virus-positive cancer.

ACTIVE_NOT_RECRUITING
Study of Iopofosine I 131 (CLR 131) in Select B-Cell Malignancies (CLOVER-1) and Pivotal Expansion in Waldenstrom Macroglobulinemia
Description

Part A of this study evaluates iopofosine I 131 (CLR 131) in patients with select B-cell malignancies (multiple myeloma( MM), indolent chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL), lymphoplasmacytic lymphoma (LPL)/Waldenstrom Macroglobulinemia (WM), marginal zone lymphoma (MZL), mantle cell lymphoma (MCL), diffuse large B-cell lymphoma (DLBCL), and central nervous system lymphoma (CNSL) who have been previously treated with standard therapy for their underlying malignancy. Part B (CLOVER-WaM) is a pivotal efficacy study evaluating IV administration of iopofosine I 131 in patients with WM that have received at least two prior lines of therapy.

TERMINATED
BEAM vs. 90-Yttrium Ibritumomab Tiuxetan (Zevalin®)/BEAM With ASCT for Relapsed DLBCL
Description

This randomized phase III trial studies 90-yttrium ibritumomab tiuxetan and combination chemotherapy compared with combination chemotherapy alone before stem cell transplant in treating patients with diffuse large b-cell non-Hodgkin lymphoma that has returned after a period of improvement. Radioactive substances linked to monoclonal antibodies, such as 90-yttrium ibritumomab tiuxetan, can bind to cancer cells and give off radiation which may help kill cancer cells. Drugs used in chemotherapy, such as carmustine, etoposide phosphate, cytarabine, and melphalan (BEAM), work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether 90-yttrium ibritumomab tiuxetan and BEAM before a stem cell transplant are more effective than BEAM alone in treating patients with diffuse large b-cell non-Hodgkin lymphoma.

TERMINATED
Donor Stem Cell Transplant in Treating Patients With Relapsed Hematologic Malignancies or Secondary Myelodysplasia Previously Treated With High-Dose Chemotherapy and Autologous Stem Cell Transplant
Description

RATIONALE: Giving chemotherapy, such as busulfan and fludarabine phosphate, before a peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving methotrexate, tacrolimus, and antithymocyte globulin before and after the transplant may stop this from happening. Once the donated stem cells begin working, the patient's immune system may see the remaining cancer cells as not belonging in the patient's body and destroy them (called graft-versus-tumor effect). Giving an infusion of the donor's white blood cells (donor lymphocyte infusion) may boost this effect. PURPOSE: This phase II trial is studying how well donor stem cell transplant works in treating patients with relapsed hematologic malignancies or secondary myelodysplasia previously treated with high-dose chemotherapy and autologous stem cell transplant .

TERMINATED
Study of a Triple Combination Therapy, DTRM-555, in Patients With R/R CLL or R/R Non-Hodgkin's Lymphomas
Description

Targeted drug therapies have greatly improved outcomes for patients with relapsed or refractory (R/R) chronic lymphocytic leukemia (CLL) and non-Hodgkin's lymphoma. However, single drug therapies have limitations, therefore, the current study is evaluating a novel oral combination of targeted drugs as a way of overcoming these limitations. This study will determine the efficacy of the triple combination therapy, DTRM-555, in patients with R/R CLL or R/R non-Hodgkin's lymphoma.