61 Clinical Trials for Various Conditions
This study is a prospective, non-randomized observational study. Freshly isolated tumor cells will be tested for chemosensitivity to the standard of care drugs as single agents and in combinations using state-of-the-art viability assay designed for ex-vivo high-throughput drug sensitivity testing (DST). In addition, the genetic profile of the tumor will be obtained from the medical records and correlated with drug response.
This Phase 1, multicenter, open-label, dose escalation and expansion study is designed to assess the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and preliminary clinical activity of FHD-609 given intravenously in subjects with advanced synovial sarcoma or advanced SMARCB1-loss tumors.
The phase I portion of this study is designed for children or adolescents and young adults (AYA) with a diagnosis of a solid tumor that has recurred (come back after treatment) or is refractory (never completely went away). The trial will test 2 combinations of therapy and participants will be randomly assigned to either Arm A or Arm B. The purpose of the phase I study is to determine the highest tolerable doses of the combinations of treatment given in each Arm. In Arm A, children and AYAs with recurrent or refractory solid tumors will receive 2 medications called Onivyde and talazoparib. Onivyde works by damaging the DNA of the cancer cell and talazoparib works by blocking the repair of the DNA once the cancer cell is damaged. By damaging the tumor DNA and blocking the repair, the cancer cells may die. In Arm B, children and AYAs with recurrent or refractory solid tumors will receive 2 medications called Onivyde and temozolomide. Both of these medications work by damaging the DNA of the cancer call which may cause the tumor(s) to die. Once the highest doses are reached in Arm A and Arm B, then "expansion Arms" will open. An expansion arm treats more children and AYAs with recurrent or refractory solid tumors at the highest doses achieved in the phase I study. The goal of the expansion arms is to see if the tumors go away in children and AYAs with recurrent or refractory solid tumors. There will be 3 "expansion Arms". In Arm A1, children and AYAs with recurrent or refractory solid tumors (excluding Ewing sarcoma) will receive Onivyde and talazoparib. In Arm A2, children and AYAs with recurrent or refractory solid tumors, whose tumors have a problem with repairing DNA (identified by their doctor), will receive Onivyde and talazoparib. In Arm B1, children and AYAs with recurrent or refractory solid tumors (excluding Ewing sarcoma) will receive Onivyde and temozolomide. Once the highest doses of medications used in Arm A and Arm B are determined, then a phase II study will open for children or young adults with Ewing sarcoma that has recurred or is refractory following treatment received after the initial diagnosis. The trial will test the same 2 combinations of therapy in Arm A and Arm B. In the phase II, a participant with Ewing sarcoma will be randomly assigned to receive the treatment given on either Arm A or Arm B.
The study evaluates CLR 131 in children, adolescents, and young adults with relapsed or refractory malignant solid tumors and lymphoma and recurrent or refractory malignant brain tumors for which there are no standard treatment options with curative potential.
This study will include participants with various types of cancer known as soft-tissue sarcomas. Tissues that can be affected by soft tissue sarcomas include fat, muscle, blood vessels, deep skin tissues, tendons and ligaments. Soft tissue cancers are rare and can occur almost anywhere in the body. Part 1 of this trial will study the safety and the level that adverse effects of the study drug tazemetostat in combination with doxorubicin (current front line treatment) can be tolerated (known as tolerability). It is also designed to establish a recommended study drug dosage for the next part of the study. Part 2 will evaluate and compare how long participants live without their disease getting worse when receiving the study drug plus doxorubicin versus doxorubicin plus placebo (dummy treatment).
This is a Phase I, open-label, dose escalation and dose expansion study with BID (suspension) and TID (tablet) oral dose of the enhancer of zeste homolog-2 (EZH2) inhibitor, tazemetostat. Subjects will be screened for eligibility within 14 days of the planned first dose of tazemetostat. A treatment cycle will be 28 days. Response assessment will be evaluated after 8 weeks of treatment and subsequently every 8 weeks while on study.
This research study is studying stereotactic body radiotherapy (SBRT) as a possible treatment for lung relapse of Ewing sarcoma, rhabdomyosarcoma, osteosarcoma, non-rhabdomyosarcoma soft tissue sarcoma, Wilms tumor or other primary renal tumor (including clear cell and rhabdoid). SBRT is a form of targeted radiotherapy that can treat very small tumors using a few large doses.
This research study involves a combination of three drugs given together as a possible treatment for malignant rhabdoid tumor, atypical teratoid rhabdoid tumor, epithelioid sarcoma, chordoma or other tumors that are deficient in one of two possible proteins, either INI-1 (SMARCB1) or SMARCA4. The names of the study drugs involved in this study are: * Tazemetostat (TAZVERIK) * Nivolumab (OPDIVO) * Ipilimumab (YERVOY)
This phase I/II trial studies how well tiragolumab and atezolizumab works when given to children and adults with SMARCB1 or SMARCA4 deficient tumors that have either come back (relapsed) or do not respond to therapy (refractory). SMARCB1 or SMARCA4 deficiency means that tumor cells are missing the SMARCB1 and SMARCA4 genes, seen with some aggressive cancers that are typically hard to treat. Immunotherapy with monoclonal antibodies, such as tiragolumab and atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
This clinical trial is studying two immunotherapy drugs (nivolumab and ipilimumab) given together as a possible treatment for INI1-negative tumors.
A study to learn about safety and find out maximum tolerable dose of palbociclib given in combination with chemotherapy (temozolomide with irinotecan or topotecan with cyclophosphamide) in children, adolescents and young adults with recurrent or refractory solid tumors (phase 1). Neuroblastoma tumor specific cohort to further evaluate antitumor activity of palbociclib in combination with topotecan and cyclophosphamide in children, adolescents, and young adults with recurrent or refractory neuroblastoma. Phase 2 to learn about the efficacy of palbociclib in combination with irinotecan and temozolomide when compared with irinotecan and temozolomide alone in the treatment of children, adolescents, and young adults with recurrent or refractory Ewing sarcoma (EWS).
This is a phase I study designed to determine the feasibility of transplantation using a novel transplant approach that employs a two-stage haploidentical cell infusion following myeloablative conditioning. This strategy, which includes selective depletion of naïve T cells, may speed immune reconstitution thereby potentially reducing the limitations of traditional haploidentical hematopoietic stem cell transplantation (HSCT) and increasing its potential therapeutic application. Additionally, the investigators intend to explore overall survival, event-free survival, hematopoietic cell recovery and engraftment as well as infection rates and complications in these patients.
The best treatment for recurrent cancers or those that do not respond to therapies is not known. Typically, patients with these cancers receive a combination of cancer drugs (chemotherapy), surgery, or radiation therapy. These treatments can prolong their life but may not offer a long-term cure. This study proposes using a drug called Sirolimus in combination with common chemotherapy drugs to treat patients with recurrent and refractory solid tumors. Sirolimus has been found to inhibit cell growth and to have anti-tumor activity in pediatric solid tumors in previous studies and, therefore, has the potential to increase the effectiveness of the chemotherapy drugs when given together. This study wil investigate the highest dose of Sirolimus that can be given orally with other oral chemotherapy drugs. Cohorts of 2 subjects will be started at the minimum dose. The dose will be increased in the next 2 subjects as long as there were no major reactions in the previous groups. This study will also seek to learn more about the side effects of sirolimus when used in this combination and what effects the drug has on the white cells and the immune system. Successful use of this drug will impact the cancer population greatly by providing an increased chance of survival to those with resistant or recurrent cancers.
This research study is studying biomarkers in tissue samples from patients with high-risk Wilms tumor. Studying samples of tissue from patients with cancer in the laboratory may help doctors to learn more about changes that occur in DNA and identify biomarkers related to cancer.
Hematopoietic stem cell transplantation can cure patients with blood cancer and other underlying diseases. αβ-T cell and B cell depletion has been introduced to decrease GVHD and PTLD and has demonstrated effectiveness for hematologic malignancies and non-malignant diseases additionally increasing the donor pool as to allow for haploidentical transplant to safely occur. While solid tumors can be highly chemotherapy sensitive, many remain resistant and require multimodalities of treatment. Immunotherapy has been developed to harness the immune system in fighting solid tumors, though not all have targeted effects. Some solid tumors are treated with autologous transplants; however, they do not always demonstrate an improved event free survival or overall survival. There has been evidence of the use of allogeneic stem cell transplants to provide a graft versus tumor effect, though studies remain limited. By utilizing αβ-T cell and B cell depletion for stem cell transplants and combining with zoledronic acid, the immune system may potentially be harnessed and enhanced to provide an improved graft versus tumor effect in relapsed/refractory solid tumors and promote an improved event-free survival and overall survival. This study will investigate the safety of treatment with a stem cell graft depleted of αβ-T cell and CD19+ B cells in combination with zoledronic acid in pediatric and young adult patients with select solid tumors, as well as whether this treatment improves survival rates in these patients.
The body has different ways of fighting infection and disease. No single way seems perfect for fighting cancers. This research study combines two different ways of fighting cancer: antibodies and T cells. Antibodies are types of proteins that protect the body from infectious diseases and possibly cancer. T cells, also called T lymphocytes, are special infection-fighting blood cells that can kill other cells, including cells infected with viruses and tumor cells. Both antibodies and T cells have been used to treat patients with cancers. They have shown promise but have not been strong enough to cure most patients. In order to get them to kill cancers more effectively, in the laboratory, the study team inserted a new gene called a chimeric antigen receptor (CAR) into T cells that makes them recognize cancer cells and kill them. When inserted, this new CAR T cell can specifically recognize a protein found on solid tumors, called glypican-3 (GPC3). To make this GPC3-CAR more effective, the study team also added two genes called IL15 and IL21 that help CAR T cells grow better and stay in the blood longer so that they may kill tumors better. When the study team did this in the laboratory, they found that this mixture of GPC3-CAR,IL15 and IL21 killed tumor cells better when compared with CAR T cells that did not have IL15 plus IL21 in the laboratory. This study will use those cells, which are called 21.15.GPC3-CAR T cells, to treat patients with solid tumors that have GPC3 on their surface. The study team also wanted to make sure that they could stop the 21.15.GPC3-CAR T cells from growing in the blood should there be any bad side effects. In order to do so, they inserted a gene called iCasp9 into the CO-EXIST T cells. This allows us the elimination of 21.15.GPC3-CAR T cells in the blood when the gene comes into contact with a medication called AP1903. The drug (AP1903) is an experimental drug that has been tested in humans with no bad side-effects. This drug will only be used to kill the T cells if necessary due to side effects . The study team has treated patients with T cells that include GPC3. Patients have also been treated with IL-21 and with IL-15. Patients have not been treated with a combination of T cells that contain GPC3, IL-21 and IL-15. To summarize, this study will test the effect of 21.15.GPC3-CAR T cells in patients with solid tumors that express GPC3 on their surface. The 21.15.GPC3-CAR T cells are an investigational product not yet approved by the Food and Drug Administration.
This study will expand the types of pediatric cancers being evaluated for response to cabozantinib. The current COG study is restricted to Ewing sarcoma, osteosarcoma, rhabdomyosarcoma, Wilms tumor, and a handful of uncommon tumors. The proposed study will extend this evaluation to tumors that have been shown to either express known targets of cabozantinib or with preclinical evidence of efficacy, including specifically neuroblastomas. These tumors have high morbidity and mortality, particularly in the relapse setting, and few or no proven therapeutic options. As such, evaluation of cabozantinib in these studies is warranted. The study hypothesizes that use of cabozantinib in patients with ultra-high-risk pediatric solid tumors with minimal disease burden, as defined in the inclusion criteria below, can prevent and/or slow recurrent tumor formation in pediatric solid tumors and thereby significantly extend the period of disease control and/or induce a durable cure.
Patients may be considered if the cancer has come back, has not gone away after standard treatment or the patient cannot receive standard treatment. This research study uses special immune system cells called CATCH T cells, a new experimental treatment. The body has different ways of fighting infection and disease. No single way seems perfect for fighting cancers. This research study combines two different ways of fighting cancer: antibodies and T cells. Antibodies are types of proteins that protect the body from infectious diseases and possibly cancer. T cells, also called T lymphocytes, are special infection-fighting blood cells that can kill other cells, including cells infected with viruses and tumor cells. Both antibodies and T cells have been used to treat patients with cancers. They have shown promise, but have not been strong enough to cure most patients. Investigators have found from previous research that we can put a new gene (a tiny part of what makes-up DNA and carriesa person's traits) into T cells that will make them recognize cancer cells and kill them . In the lab, we made several genes called a chimeric antigen receptor (CAR), from an antibody called GC33. The antibody GC33 recognizes a protein called GPC3 that is found on the hepatocellular carcinoma the patient has. The specific CAR we are making is called GPC3-CAR. To make this CAR more effective, we also added a gene encoding protein called IL15. This protein helps CAR T cells grow better and stay in the blood longer so that they may kill tumors better. The mixture of GPC3-CAR and IL15 killed tumor cells better in the laboratory when compared with CAR T cells that did not have IL 15. This study will test T cells that we have made with CATCH T cells in patients with GPC3-positive solid tumors such as the ones participating in this study. T cells made to carry a gene called iCasp9 can be killed when they encounter a specific drug called AP1903. The investigators will insert the iCasp9 and IL15 together into the T cells using a virus that has been made for this study. The drug (AP1903) is an experimental drug that has been tested in humans with no bad side-effects. The investigators will use this drug to kill the T cells if necessary due to side effects. This study will test T cells genetically engineered with a GPC3-CAR and IL15 (CATCH T cells) in patients with GPC3-positive solid tumors. The CATCH T cells are an investigational product not approved by the Food and Drug Administration. The purpose of this study is to find the biggest dose of CATCH T cells that is safe , to see how long they last in the body, to learn what the side effects are and to see if the CATCH T cells will help people with GPC3-positive solid tumors.
3CAR is being done to investigate an immunotherapy for patients with solid tumors. It is a Phase I clinical trial evaluating the use of autologous T cells genetically engineered to express B7-H3-CARs for patients ≤ 21 years old, with relapsed/refractory B7-H3+ solid tumors. This study will evaluate the safety and maximum tolerated dose of B7-H3-CAR T cells.The purpose of this study is to find the maximum (highest) dose of B7-H3-CAR T cells that are safe to give to patients with B7-H3-positive solid tumors. Primary objective To determine the safety of one intravenous infusion of autologous, B7-H3-CAR T cells in patients (≤ 21 years) with recurrent/refractory B7-H3+ solid tumors after lymphodepleting chemotherapy Secondary objective To evaluate the antitumor activity of B7-H3-CAR T cells Exploratory objectives * To evaluate the tumor environment after treatment with B7-H3-CAR T cells * To assess the immunophenotype, clonal structure and endogenous repertoire of B7-H3-CAR T cells and unmodified T cells * To characterize the cytokine profile in the peripheral blood after treatment with B7-H3-CAR T cells
The participants of this study will have advanced malignancies (also known as advanced cancer). The main aim of this trial will be to study the blood levels (known as pharmacokinetics) of the tazemtostat (the study drug) when administered in combination with another drug. Part 1 of the study will evaluate the interaction between the drugs tazemetostat and itraconazole. Part 2 of the study will evaluate the interaction between the drugs tazemetostat and rifampin For both Parts 1 and 2, safety and the level that effects of the study drug can be tolerated (known as tolerability) will be assessed throughout.
This is a phase I, open-label, non-randomized study that will enroll pediatric and young adult research participants with relapsed or refractory non-CNS solid tumors to evaluate the safety, feasibility, and efficacy of administering T cell products derived from the research participant's blood that have been genetically modified to express a B7H3-specific receptor (chimeric antigen receptor, or CAR) that will target and kill solid tumors that express B7H3. On Arm A of the study, research participants will receive B7H3-specific CAR T cells only. On Arm B of the study, research participants will receive CAR T cells directed at B7H3 and CD19, a marker on the surface of B lymphocytes, following the hypothesis that CD19+ B cells serving in their normal role as antigen presenting cells to T cells will promote the expansion and persistence of the CAR T cells. Arm A CAR T cells include the protein EGFRt and Arm B CAR T cells include the protein HER2tG. These proteins can be used to both track and destroy the CAR T cells in case of undue toxicity. The primary objectives of the study will be to determine the feasibility of manufacturing the cell products, the safety of the T cell product infusion, to determine the maximum tolerated dose of the CAR T cells products, to describe the full toxicity profile of each product, and determine the persistence of the modified cell in the participant's body on each arm. Participants will receive a single dose of T cells comprised of two different subtypes of T cells (CD4 and CD8 T cells) felt to benefit one another once administered to the research participants for improved potential therapeutic effect. The secondary objectives of this protocol are to study the number of modified cells in the patients and the duration they continue to be at detectable levels. The investigators will also quantitate anti-tumor efficacy on each arm. Participants who experience significant and potentially life-threatening toxicities (other than clinically manageable toxicities related to T cells working, called cytokine release syndrome) will receive infusions of cetuximab (an antibody commercially available that targets EGFRt) or trastuzumab (an antibody commercially available that targets HER2tG) to assess the ability of the EGFRt on the T cells to be an effective suicide mechanism for the elimination of the transferred T cell products.
This phase II pediatric MATCH treatment trial studies how well selpercatinib works in treating patients with solid tumors that may have spread from where they first started to nearby tissue, lymph nodes, or distant parts of the body (advanced), lymphomas, or histiocytic disorders that have activating RET gene alterations. Selpercatinib may block the growth of cancer cells that have specific genetic changes in an important signaling pathway (called the RET pathway) and may reduce tumor size.
This study will be performed to evaluate the Clinical Outcomes and Quality of Life after Transarterial Radioembolization with Yttrium-90 (TARE-Y90) in Children, Adolescents, and Young Adults with Liver Tumors. The treatment and techniques used here are well established in adults. The purpose of this study is to evaluate: 1. the response to treatment and clinical outcomes of treatment with TARE Y-90 as part of standard therapy and 2. to assess the change in the patient's quality of life before, during and after treatment with TARE-Y90
This phase II pediatric MATCH trial studies how well tipifarnib works in treating patients with solid tumors that have recurred or spread to other places in the body (advanced), lymphoma, or histiocytic disorders, that have a genetic alteration in the gene HRAS. Tipifarnib may block the growth of cancer cells that have specific genetic changes in a gene called HRAS and may reduce tumor size.
This phase II Pediatric MATCH trial studies how well ivosidenib works in treating patients with solid tumors that have spread to other places in the body (advanced), lymphoma, or histiocytic disorders that have IDH1 genetic alterations (mutations). Ivosidenib may block the growth of cancer cells that have specific genetic changes in an important signaling pathway called the IDH pathway.
The purpose of this retrospective and prospective project is to understand the molecular and genetic basis of liver cancer of childhood. Understanding the molecular and genetic bases of liver cancers can offer a better classification based on tumor biology, mechanisms and predisposition.
This phase II Pediatric MATCH trial studies how well ulixertinib works in treating patients with solid tumors that have spread to other places in the body (advanced), non-Hodgkin lymphoma, or histiocytic disorders that have a genetic alteration (mutation) in a signaling pathway called MAPK. A signaling pathway consists of a group of molecules in a cell that control one or more cell functions. Genes in the MAPK pathway are frequently mutated in many types of cancers. Ulixertinib may stop the growth of cancer cells that have mutations in the MAPK pathway.
This is a phase I, open-label, non-randomized study that will enroll pediatric and young adult research participants with relapsed or refractory non-CNS solid tumors to evaluate the safety, feasibility, and efficacy of administering T cell products derived from the research participant's blood that have been genetically modified to express a EGFR-specific receptor (chimeric antigen receptor, or CAR) that will target and kill solid tumors that express EGFR and the selection-suicide marker EGFRt. EGFRt is a protein incorporated into the cell with our EGFR receptor which is used to identify the modified T cells and can be used as a tag that allows for elimination of the modified T cells if needed. On Arm A of the study, research participants will receive EGFR-specific CAR T cells only. On Arm B of the study, research participants will receive CAR T cells directed at EGFR and CD19, a marker on the surface of B lymphocytes, following the hypothesis that CD19+ B cells serving in their normal role as antigen presenting cells to T cells will promote the expansion and persistence of the CAR T cells. The CD19 receptor harbors a different selection-suicide marker, HERtG. The primary objectives of the study will be to determine the feasibility of manufacturing the cell products, the safety of the T cell product infusion, to determine the maximum tolerated dose of the CAR T cells products, to describe the full toxicity profile of each product, and determine the persistence of the modified cell in the subject's body on each arm. Subjects will receive a single dose of T cells comprised of two different subtypes of T cells (CD4 and CD8 T cells) felt to benefit one another once administered to the research participants for improved potential therapeutic effect. The secondary objectives of this protocol are to study the number of modified cells in the patients and the duration they continue to be at detectable levels. The investigators will also quantitate anti-tumor efficacy on each arm. Subjects who experience significant and potentially life-threatening toxicities (other than clinically manageable toxicities related to T cells working, called cytokine release syndrome) will receive infusions of cetuximab (an antibody commercially available that targets EGFRt) or trastuzumab (an antibody commercially available that targets HER2tG) to assess the ability of the EGFRt on the T cells to be an effective suicide mechanism for the elimination of the transferred T cell products.
This phase II Pediatric MATCH trial studies how well palbociclib works in treating patients with Rb positive solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with activating alterations (mutations) in cell cycle genes that have spread to other places in the body and have come back or do not respond to treatment. Palbociclib may stop the growth of cancer cells by blocking some of the proteins needed for cell growth.
Background: Primary tumors of the brain and spine are those that start in the brain or spine. These tumors are rare, accounting for \<2% of all cancers diagnosed in the United States. Some of these tumors occur in less than 2,000 people per year. Researchers want to study a large group of people with this kind of tumor. They want to learn more about the tumors, including the risk factors related to how they develop in adults. Objective: To collect health and gene data to learn about what changes are associated with a rare CNS Tumors, to eventually screen for these changes or target the genes in treatment. Eligibility: Adult participants \>= 18 years of age who self- identify as being diagnosed with one of 12 rare CNS tumors, including: Atypical teratoid rhabdoid tumor (ATRT); Brainstem and midline gliomas; Choroid plexus tumors; Ependymoma; High grade meningioma; Gliomatosis cerebri; Medulloblastoma; Oligodendroglioma / Anaplastic oligodendroglioma; Pineal region tumors; Pleomorphic xanthroastrocytoma / Anaplastic pleomorphic xanthroastrocytoma; PNET (Supratentorial embryonal tumor); Primary CNS sarcoma / Secondary CNS sarcoma (Gliosarcoma). Design: Participants will be invited to participate through an ad on the CERN Foundation website (ependymoma), information on the Neuro-Oncology Branch website and other identified advocacy and social media sites and direct mailer to those who have already participated in the EO projects. (Registered Trademark) * Interested participants will complete an enrollment form that will be sent to the study coordinator. * The coordinator will then send the participant a consent form and schedule a time for phone consent. * Participants will complete the Rare CNS tumors Outcomes Survey and once completed, the Rare CNS tumors Risk survey. (Registered Trademark) * The questions on the Outcomes Survey will include treatment history, symptoms social and clinical information and it should take about 25-35 minutes. The Risk survey will cover their demographic information, personal medical history, family medical history and environmental exposures. This should take about 52 minutes. * Participants who have physical problems can have help with the surveys and forms. * Once the surveys are completed, participants will be mailed a kit to collect saliva for germline DNA. Participants will ship the sample to the study team in a prepaid envelope * If the sample is not sufficient, participants will be contacted to give provide an additional sample....