374 Clinical Trials for Various Conditions
This phase 2 study evaluates the sequential combination of decitabine then midostaurin for the treatment of newly-diagnosed acute myeloid leukemia (AML) in older patients.
There was no well accepted standard of care for participants who failed or were intolerant to any of the currently approved therapies for myelodysplastic syndromes (MDS). In this study, participants were initially assigned to receive 55 or 35 milligrams (mg) of oral clofarabine daily for 5 days. After safety review of the first participants enrolled, the dose was reduced to 25 milligrams per day (mg/day) for up to 8 cycles as long as the participants continued to benefit and in the absence of progressive disease.
This phase II trial of the impact of clinicogenetic risk-stratified management on outcomes of acute myeloid leukemia in older patients is to determine the rate of complete remission and mortality at 90 days in the entire cohort of older patients (≥60 years) with newly diagnosed acute myeloid leukemia, who receive clinicogenetic risk-stratified therapy allocation. Subjects will receive standard of care intensive or low-intensity induction based on cytogenetic and geriatric assessment-based risk stratification. Subjects will be evaluated for disease status, survival, quality of life and neurocognitive status for 90 days and then followed for a total of 2 years for survival data.
This phase II trial is studying the side effects and best dose of bortezomib and to see how well it works when given together with combination chemotherapy in treating younger patients with recurrent, refractory, or secondary acute myeloid leukemia (AML). Bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as idarubicin, cytarabine, and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) together with bortezomib may kill more cancer cells
RATIONALE: Listening to relaxing music during a bone marrow biopsy may be effective in reducing anxiety and pain. PURPOSE: This randomized clinical trial is studying how well music works in reducing anxiety and pain in adult patients undergoing bone marrow biopsy for hematologic cancers or other diseases.
This phase II trial studies how well reduced intensity donor peripheral blood stem cell (PBSC) transplant works in treating patients with de novo or secondary acute myeloid leukemia (AML) in remission. Giving low doses of chemotherapy, such as fludarabine phosphate, and total-body irradiation (TBI) before a donor PBSC transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening
RATIONALE: Interleukin-2 may stimulate a person's white blood cells to kill metastatic cancer cells. Interferon alfa may interfere with the growth of the cancer cells. Combining interleukin-2 and interferon alfa may kill more cancer cells. PURPOSE: Phase II trial to study the effectiveness of interleukin-2 plus interferon alfa in treating adults with metastatic cancer.
This pilot trial studies decitabine, donor natural killer cells, and aldesleukin in treating patients with acute myeloid leukemia that has come back after previous treatment (relapsed) or has not responded to previous treatment (refractory). Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving donor natural killer cells after decitabine may boost the patient's immune system by helping it see the remaining cancer cells as not belonging in the patient's body and causing it to destroy them (called graft-versus-tumor effect). Aldesleukin may stimulate natural killer cells to kill acute myeloid leukemia cells. Giving decitabine, donor natural killer cells, and aldesleukin may be a better treatment for acute myeloid leukemia.
This phase I trial studies the side effects and best dose of AR-42 when given together with decitabine in treating patients with acute myeloid leukemia. AR-42 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving AR-42 together with decitabine may kill more cancer cells.
This pilot phase II trial studies whether biomarkers (biological molecules) in bone marrow samples can predict treatment response to sirolimus and chemotherapy (mitoxantrone hydrochloride, etoposide, and cytarabine \[MEC\]) in patients with acute myeloid leukemia (AML) that is likely to come back or spread (high-risk). Sirolimus inhibits or blocks the pathway that causes cancer cells to grow. Adding sirolimus to standard chemotherapy may help improve patient response. Studying samples of bone marrow from patients treated with sirolimus in the laboratory may help doctors learn whether sirolimus reverses or turns off that pathway and whether changes in biomarker levels can predict how well patients will respond to treatment.
This phase I trial studies the side effects and best dose of pacritinib when given together with chemotherapy in treating patients with acute myeloid leukemia that have an abnormal change (mutation) in the fms-related tyrosine kinase 3 (FLT3) gene. Pacritinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cytarabine, daunorubicin hydrochloride, and decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving pacritinib and chemotherapy may be a better treatment for acute myeloid leukemia with FLT3 mutations.
This phase I trial studies the side effects and best dose of selinexor when given together with etoposide with or without mitoxantrone hydrochloride and cytarabine in treating patients with acute myeloid leukemia that has returned (relapsed) or has not responded to treatment (refractory). Selinexor may help stop the growth of tumor cells by blocking an enzyme needed for cancer cell growth. Drugs used in chemotherapy, such as etoposide, mitoxantrone hydrochloride, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy together with selinexor work better in treating relapsed or refractory acute myeloid leukemia.
This phase I trial studies the side effects and the best dose of genetically modified T-cells after lymphodepleting chemotherapy in treating patients with acute myeloid leukemia or blastic plasmacytoid dendritic cell neoplasm that has returned after a period of improvement or has not responded to previous treatment. An immune cell is a type of blood cell that can recognize and kill abnormal cells in the body. The immune cell product will be made from patient or patient's donor (related or unrelated) blood cells. The immune cells are changed by inserting additional pieces of deoxyribonucleic acid (DNA) (genetic material) into the cell to make it recognize and kill cancer cells. Placing a modified gene into white blood cells may help the body build an immune response to kill cancer cells.
This phase I/II trial studies the side effects and best dose of dasatinib when given together with cytarabine and idarubicin hydrochloride and to see how well they work in treating patients with acute myeloid leukemia that is likely to come back or spread. Dasatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cytarabine and idarubicin hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving dasatinib together with cytarabine and idarubicin hydrochloride may be a better treatment for acute myeloid leukemia.
This phase I trial studies the side effects and best dose of azacitidine when given together with cytarabine and mitoxantrone hydrochloride in treating patients with high-risk acute myeloid leukemia. Drugs used in chemotherapy, such as azacitidine, cytarabine, and mitoxantrone hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Azacitidine may also help cytarabine and mitoxantrone hydrochloride work better by making the cancer cells more sensitive to the drugs
This phase I trial studies the side effects of donor stem cell transplant in treating patients with high risk acute myeloid leukemia. Giving low doses of chemotherapy before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells when they do not exactly match the patient's blood. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect)
This phase I/II trial studies the side effects of laboratory-treated T cells and to see how well they work in treating patients with high-risk acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), or chronic myelogenous leukemia (CML) that has returned after a period of improvement (relapsed), previously treated with donor stem cell transplant. Biological therapies, such as cellular adoptive immunotherapy, may stimulate the immune system in different ways and stop cancer cells from growing. Placing a gene that has been created in the laboratory into a person's T cells may make the body build an immune response to kill cancer cells.
This phase II trial is studying how well tipifarnib works in treating older patients with acute myeloid leukemia. Tipifarnib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase I trial is studying the side effects and best dose of 5-Fluoro-2'-deoxycytidine (FdCyd) when given together with tetrahydrouridine (THU) in treating patients with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS). FdCyd may inhibit cancer cell growth by increasing the production in cells of compounds that suppress growth or by otherwise killing cells. Although FdCyd is stable as a drug solution, it is rapidly inactivated by an enzyme present in people. THU is included in the treatment to inhibit the enzyme, prolonging the time FdCyd remains in the body
This research study is looking at biomarkers in DNA samples from patients with acute lymphoblastic leukemia or acute myeloid leukemia. Studying samples of DNA from patients with cancer in the laboratory may help doctors identify and learn more about biomarkers related to cancer.
This phase I trial is studying the side effects and best dose of bortezomib when given together with decitabine in treating patients with acute myeloid leukemia. Bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving bortezomib together with decitabine may kill more cancer cells.
This phase II clinical trial is studying how well selumetinib works in treating patients with recurrent or refractory acute myeloid leukemia. Selumetinib may stop the growth of cancer by blocking some of the enzymes needed for cell growth
This phase II trial is studying how well decitabine works in treating patients with previously untreated acute myeloid leukemia. Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing
This phase II trial is studying how well cediranib maleate works in treating patients with relapsed, refractory, or untreated acute myeloid leukemia or high-risk myelodysplastic syndrome. Cediranib maleate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer.
This phase II trial is studying how well giving MS-275 together with GM-CSF works in treating patients with myelodysplastic syndrome and/or relapsed or refractory acute myeloid leukemia. MS-275 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Colony-stimulating factors, such as GM-CSF, may increase the number of immune cells found in bone marrow or peripheral blood. Giving MS-275 together with GM-CSF may be an effective treatment for myelodysplastic syndrome and acute myeloid leukemia
This trial is studying the side effects and how well giving cyclophosphamide and busulfan followed by donor stem cell transplant works in treating patients with myelofibrosis, acute myeloid leukemia, or myelodysplastic syndrome. Giving chemotherapy, such as cyclophosphamide and busulfan, before a donor stem cell transplant helps stops the growth of cancer cells. It also helps stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and methotrexate after the transplant may stop this from happening
This phase II trial is studying the side effects and how well giving alvocidib together with cytarabine and mitoxantrone works in treating patients with newly diagnosed acute myeloid leukemia. Drugs used in chemotherapy, such as alvocidib, cytarabine, and mitoxantrone, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells.
This phase II trial is studying how well lenalidomide works in treating older patients with acute myeloid leukemia with abnormal chromosome 5q. Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing.
Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for their growth. Giving the drug in different ways may kill more cancer cells. This randomized phase II trial is studying two different schedules of vorinostat to see how well they work in treating patients with acute myeloid leukemia.
This phase I trial is studying the side effects and best dose of SJG-136 in treating patients with relapsed or refractory acute leukemia, myelodysplastic syndromes, blastic phase chronic myelogenous leukemia, or chronic lymphocytic leukemia. Drugs used in chemotherapy, such as SJG-136, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing.