Treatment Trials

11 Clinical Trials for Various Conditions

Focus your search

COMPLETED
Alemtuzumab to Treat Severe Aplastic Anemia
Description

This study will evaluate the safety and usefulness of a new immunosuppressive drug, alemtuzumab (Campath ), in patients with severe aplastic anemia (SAA). SAA is a rare and serious blood disorder in which the bone marrow stops making red blood cells, white blood cells and platelets. Alemtuzumab is a monoclonal antibody that attaches to and kills white blood cells called lymphocytes. In certain types of aplastic anemia, lymphocytes are responsible for the destruction of stem cells in the bone marrow, leading to a decrease in blood counts. Because alemtuzumab destroys lymphocytes, it may be effective in treating aplastic anemia. Alemtuzumab is currently approved to treat chronic lymphocytic leukemia and is also helpful in other conditions that require immunosuppression, such as rheumatoid arthritis and immune cytopenias. Patients 2 years of age and older with severe aplastic anemia whose disease does not respond to immunosuppressive therapy or has recurred following immunosuppressive therapy may be eligible for this study. Participants undergo the following tests and procedures: * Pretreatment evaluation: Patients have a medical history, physical examination, blood tests, electrocardiogram (EKG), echocardiogram, 24-hour Holter monitor (continuous 24-hour monitoring of electrical activity of the heart), bone marrow biopsy (withdrawal through a needle of a small sample of bone marrow for analysis). * Placement of a central line, if needed: An intravenous line (tube) is placed into a major vein in the patient's chest. It can stay in the body for the entire treatment period and be used to give chemotherapy or other medications, including antibiotics and blood transfusions, if needed, and to withdraw blood samples. * Alemtuzumab therapy: Patients are admitted to the NIH Clinical Center for the first few injections for close monitoring of side effects. After receiving an initial small test dose, patients begin the first of ten daily injections under the skin, each lasting about 2 hours. Once patients tolerate the infusions with minimal or no side effects, they may be given the remaining infusions on an outpatient basis. Patients who relapse after their initial response to alemtuzumab are given cyclosporine to see if this drug will boost their immune response. * Patients receive transfusions, growth factors, and antibiotic therapy, as needed. * Infection therapy: Patients are given aerosolized pentamidine to protect against lung infections and valacyclovir to protect against herpes infections. * A blood test is done and vital signs are measured every day while patients receive alemtuzumab. * Patients have an echocardiogram and 24-hour Holter monitor after the last dose of alemtuzumab. * Blood tests are done weekly for the first 3 months after alemtuzumab administration, then every other week until 6 months. Patients return to the NIH for follow-up visits 1 month, 3 months, 6 months, and yearly for 5 years after the last dose of alemtuzumab for the following tests and evaluations: * Blood test * Repeat echocardiogram at 3-month visit * Repeat bone marrow biopsy 6 months and 12 months after alemtuzumab, then as clinically indicated for 5 years.

COMPLETED
Retrospective Study of Patients With Severe Aplastic Anemia Who Relapsed After Immunosuppressive Therapy
Description

Background: Severe aplastic anemia (SAA) is a form of bone marrow failure. It usually results from a cytotoxic T cell attack on the marrow stem cell. Two treatments can be used for most people with SAA. One is allogeneic hematopoietic stem cell transplant (HSCT). The other is immunosuppressive treatment (IST). For people who are treated with IST, relapse can occur. If this happens, they can have HSCT or be re-treated with IST. The two most common IST regimes used for relapsed SAA are rabbit ATG (rATG) and alemtuzumab. Both rATG and alemtuzumab have similar response rates and survival rates. There is not much long-term data on people who need repeat IST treatment due to relapse. Researchers want to look at data from past studies to learn more. Objective: To compare the data of relapsed SAA patients between those who received alemtuzumab versus rATG for repeat IST treatment. Eligibility: Adults and children with SAA who were enrolled on NHLBI protocol 12-H-0150, 06-H-0034, 05-H-0242, 03-H-0249, 03-H-0193, 00-H-0032, or 90-H-0146 Design: This study uses data from past studies. The participants in those studies have allowed their data to be used in future research. Researchers will review participants medical records. They will collect clinical data, such as notes, test results, and imaging scans. They will also collect the research data gathered as part of the original study. Researchers will enter the data into an in-house database. It is password protected. All data will be kept in secure network drives or in secure sites. Other studies may be added in the future....

COMPLETED
A Phase II Dose-escalation Study Characterizing the PK of Eltrombopag in Pediatric Patients With Previously Untreated or Relapsed Severe Aplastic Anemia or Recurrent Aplastic Anemia
Description

This is a phase II, open label, multi-center, intra-patient dose escalation study to characterize the pharmacokinetics (PK) after oral administration of eltrombopag in combination with immunosuppressive therapy in pediatric patients with previously untreated or relapsed/refractory severe aplastic anemia or recurrent aplastic anemia.

Conditions
NOT_YET_RECRUITING
UI-Romi-02; Romiplostim Added to Standard of Care for Treatment Naive and Relapsed or Refractory Severe Aplastic Anemia
Description

This Phase II open-label interventional clinical trial aims to evaluate the efficacy of romiplostim, in patients with severe aplastic anemia (SAA), both treatment naïve and relapsed/refractory, in inducing trilineage hematopoiesis in children and young adults.

Conditions
RECRUITING
REGN7257 in Adult Patients With Severe Aplastic Anemia That Is Refractory to or Relapsed on Immunosuppressive Therapy
Description

This study is researching an experimental drug called REGN7257 (called "study drug"). The study is focused on patients who have severe aplastic anemia (SAA), a disease of the bone marrow resulting in an impairment of the production of blood cells. The main purpose of this two-part study (Part A and Part B) is to test how safe and tolerable REGN7257 is in patients with SAA in which other Immunosuppressive therapies (ISTs) have not worked well. The study is looking at several other research questions to better understand the following properties of REGN7257: * Side effects that may be experienced by participants taking REGN7257 * How REGN7257 works in the body * How much REGN7257 is present in blood after dosing * If REGN7257 works to raise levels of certain blood counts after treatment * How quickly REGN7257 works to raise levels of certain blood counts * In patients for whom REGN7257 works to raise levels of certain blood counts after treatment, how many continue to show such a response throughout the study * If REGN7257 works to lower the number of platelet and red blood cell transfusions needed * How REGN7257 changes immune cell counts and composition * How the body reacts to REGN7257 and if it produces proteins that bind to REGN7257 (this would be called the formation of anti-drug antibodies \[ADA\])

ACTIVE_NOT_RECRUITING
Sirolimus (Rapamune ) for Relapse Prevention in People With Severe Aplastic Anemia Responsive to Immunosuppressive Therapy
Description

Background: People with severe aplastic anemia (SAA) do not make enough red and white blood cells, and/or platelets. Their body's immune system stops the bone marrow from making these cells. The treatment cyclosporine leads to better blood counts. But when this treatment is stopped, the disease may return in 1 in 3 people. The drug sirolimus may help by suppressing the immune system. Objective: To evaluate and compare the usefulness of sirolimus in preventing aplastic anemia from returning after cyclosporine is stopped, compared with stopping cyclosporine alone. Eligibility: People ages 2 and older with SAA who: Have responded to immunosuppressive therapy that includes cyclosporine, and continue to take cyclosporine Are not taking drugs with hematologic effects Design: Participants will be screened with: Medical history Physical exam Blood and urine tests Bone marrow biopsy: The area above the hipbone will be numbed. A thin needle will remove some bone marrow. Participants will be randomly assigned to a group. All will stop cyclosporine. Group 1 will take sirolimus by mouth at the same time each day for 3 months with close monitoring. Group 2 will not receive the study drug but will be monitored closely. Participants will have clinical tests for the first 3 months: Weekly blood test Monthly fasting blood test For group 1, measurements of sirolimus in the blood every 1 2 weeks Participants will have clinic visits at 3 months, 12 months, and annually for 5 years after the study starts. They may have another visit if their SAA returns. These will include: Blood and urine tests Bone marrow biopsy...

COMPLETED
Rabbit Antithymocyte Globulin Versus Campath-1H for Treating Severe Aplastic Anemia
Description

Severe aplastic anemia, characterized by pancytopenia and a hypocellular bone marrow, is effectively treated by immunosuppressive therapy, usually a combination of antithymocyte globulin (ATG) and cyclosporine (CsA). Survival rates following this regimen are equivalent to those achieved with allogeneic stem cells transplantation. However, approximately 1/3 of patients will not show blood count improvement after ATG/CsA. General experience and small pilot studies have suggested that such patients may benefit from further immunosuppression. Furthermore, analysis of our own clinical data suggest that patients with poor blood count responses to a single course of ATG, even when transfusion-independence is achieved, have a markedly worse prognosis than patients with robust hematologic improvement. The management of such cases is uncertain. This study will enroll patients who are either refractory to h-ATG (continued severe pancytopenia) or who have only modest improvement in blood counts (weak hematologic responders) to receive a further immunosuppressive therapy, delivered either as rabbit ATG (Thymoglobulin, r-ATG) or a humanized monoclonal antibody to T-cells, alemtuzumab (Campath-1H ). Primary endpoint will be response rate at 3 months defined as no longer meeting criteria for severe aplastic anemia. Relapse, robustness of hematopoietic recovery at 3 months, survival and clonal evolution to paroxysmal nocturnal hemoglobinuria (PNH), myelodysplasia and acute leukemia will be the secondary endpoints.

Conditions
RECRUITING
JAK1/2 Inhibitor Ruxolitinib for Relapsed/Refractory Immune Bone Marrow Failure
Description

Background: Immune bone marrow failure is a condition that occurs when a person s immune system attacks the cells of the bone marrow. This can lead to diseases including different types of anemias and blood cancers. Some of these diseases can be deadly. Better treatments are needed. Objective: To test a drug (ruxolitinib) in people with different types of immune bone marrow failure. Eligibility: Adults aged 18 and older with an immune bone marrow failure. Design: Participants will be screened. They will have a physical exam. They will give samples of blood and saliva. They will have a bone marrow biopsy: A large needle will be inserted into a small cut to remove a sample of the soft tissue inside the bone. Some participants may have a skin biopsy: A small piece of skin will be removed. Some may have a computed tomography (CT) scan: They will lie on a table that slides into a donut-shaped machine that uses X-rays to make pictures of the inside of the body. Ruxolitinib is a tablet taken by mouth. Participants will take the drug twice a day for up to 6 months. Participants will have blood tests every week while they are taking the drug. These tests can be done by the participant s own physician and the results sent to the researchers. Participants will have clinic visits after taking the drug for 3 months and 6 months and then after 1, 2, and 3 years. The blood tests and bone marrow biopsy will be repeated. Participants who improve while taking the drugs may go on to an extension phase of the study.

TERMINATED
Alefacept in Patients With Relapsed/Refractory Aplastic Anemia
Description

Aplastic Anemia (AA) is an autoimmune hematologic stem cell disease mediated by activated T-lymphocytes that leads to pancytopenia. The disease related morbidity and mortality if left untreated can approach 90%. For over 30 years, anti-thymocyte globulin (ATG) in combination with cyclosporine (CsA) remains the standard therapy. However, the treatment response with ATG is at best between 50-60% with a sizeable number of partial responses. Treatment with ATG is also associated with significant toxicity and high relapse rate that can be as high as 45%. Since the prognosis in refractory and relapsed AA remains poor, there is a need for less toxic novel immunosuppressive agents that can improve response rates and remission duration in refractory and relapsed AA. Alefacept is a human recombinant dimeric fusion protein composed of the terminal portion of leukocyte functioning antigen-3 (LFA3/CD58) and the Fc portion of human IgG1. It prevents co-stimulatory signals between antigen presenting cells and memory T cells by competitive inhibition of CD2 in T cells, induces selective apoptosis of CD4+ and CD8+ memory effector T cells by interaction between the Fc portion of IgG1 and the FcyIII in NK cells, and possibly direct ligation of CD2 molecules on T cells that subsequently result in the alteration in T cell agonist signaling. It has been used successfully in the treatment of other T cell mediated disorders particularly psoriasis and steroid refractory graft versus host disease (GVHD) with minimal side effects. In a case of liver transplant associated AA (similar to transfusion associated AA) which is fatal in most patients, Alefacept induced remission after patient did not respond to ATG and other immunosuppressants. The investigators hypothesize that the LFA3-CD2 co-stimulatory pathway play an important role in the immune pathogenesis of AA and treatment with Alefacept can help treat refractory/relapsed cases of AA.

Conditions
COMPLETED
Fludarabine Based Conditioning for Allogeneic Transplantation for Advanced Hematologic Malignancies
Description

New conditioning regimens are still needed to maximize efficacy and limit treatment-related deaths of allogeneic transplantation for advanced hematologic malignancies. Over the past several years, the investigators have evaluated several new conditioning regimens that incorporate fludarabine, a novel immunosuppressant that has limited toxicity and that has synergistic activity with alkylating agents. Recent data have suggested that fludarabine may be used in combination with standard doses of oral or IV busulfan, thus reducing the toxicity previously observed with cyclophosphamide/ busulfan regimens.

COMPLETED
T-Cell Depleted Allogeneic Stem Cell Transplantation for Patients With Hematologic Malignancies
Description

Objectives: 1. To evaluate disease free survival after Campath 1H-based in vivo T-cell depletion and non-myelo-ablative ablative stem cell transplantation in patients with hematologic malignancies. 2. To evaluate the incidence and severity of acute and chronic GVHD after Campath 1H-based in vivo T-cell depletion, in patients with hematologic malignancies undergoing non-myelo-ablative stem cell transplantation. 3. To evaluate engraftment and chimerism after Campath 1H-based in vivo T-cell depletion and non-myelo-ablative ablative stem cell transplantation in patients with hematologic malignancies.