3 Clinical Trials for Various Conditions
Early Check provides voluntary screening of newborns for a selected panel of conditions. The study has three main objectives: 1) develop and implement an approach to identify affected infants, 2) address the impact on infants and families who screen positive, and 3) evaluate the Early Check program. The Early Check screening will lead to earlier identification of newborns with rare health conditions in addition to providing important data on the implementation of this model program. Early diagnosis may result in health and development benefits for the newborns. Infants who have newborn screening in North Carolina will be eligible to participate, equating to over 120,000 eligible infants a year. Over 95% of participants are expected to screen negative. Newborns who screen positive and their parents are invited to additional research activities and services. Parents can enroll eligible newborns on the Early Check electronic Research Portal. Screening tests are conducted on residual blood from existing newborn screening dried blood spots. Confirmatory testing is provided free-of-charge for infants who screen positive, and carrier testing is provided to mothers of infants with fragile X. Affected newborns have a physical and developmental evaluation. Their parents have genetic counseling and are invited to participate in surveys and interviews. Ongoing evaluation of the program includes additional parent interviews.
This study will evaluate a new method for delivering gene transfer therapy to patients with severe combined immunodeficiency disease (SCID) due to a defective adenosine deaminase (ADA) gene. This gene codes for the adenosine deaminase enzyme, which is essential for the proper growth and function of infection-fighting white blood cells called T and B lymphocytes. Patients who lack this enzyme are vulnerable to frequent and severe infections. Some patients with this disease receive enzyme replacement therapy with weekly injections of the drug PEG-ADA (ADAGEN). This drug may increase the number of immune cells and reduce infections, but it is not a cure. Gene transfer therapy, in which a normal ADA gene is inserted into the patient s cells, attempts to correct the underlying cause of disease. This therapy has been tried in a small number of patients with varying degrees of success. In this study, the gene will be inserted into the patient s stem cells (cells produced by the bone marrow that mature into the different blood components white cells, red cells and platelets). Patients with ADA deficiency and SCID who are taking PEG-ADA and are not candidates for HLA-identical sibling donor bone marrow transplantation may be eligible for this study. Participants will be admitted to the NIH Clinical Center for 2 to 3 days. Stem cells will be collected either from cord blood (in newborn patients) or from the bone marrow. The bone marrow procedure is done under light sedation or general anesthesia. It involves drawing a small amount of marrow through a needle inserted into the hip bone. The stem cells in the marrow will be grown in the laboratory and a normal human ADA gene will be transferred into them through a special type of disabled mouse virus. A few days later, the patient will receive the ADA-corrected cells through an infusion in the vein that will last from 10 minutes to 2 hours. Patients will be evaluated periodically for immune function with blood tests, skin tests, and reactions to tetanus, diphtheria, H. influenza B and S. pneumoniae vaccinations. The survival of ADA-corrected cells will be monitored through blood tests. The number and amount of blood tests will depend on the patient s age, weight and health, but is expected that blood will not be drawn more than twice a month. Patients will also undergo bone marrow biopsy aspirate (as described above) twice a year. Patients will be followed once a year indefinitely to evaluate the long-term effects of therapy.
This study will monitor the long-term effects of gene therapy in patients with severe combined immunodeficiency disease (SCID) due to a deficiency in an enzyme called adenosine deaminase (ADA). It will also follow the course of disease in children who are not receiving gene therapy, but may have received enzyme replacement therapy with the drug PEG-ADA. ADA is essential for the growth and proper functioning of infection-fighting white blood cells called T and B lymphocytes. Patients who lack this enzyme are, therefore, immune deficient and vulnerable to frequent infections. Injections of PEG-ADA may increase the number of immune cells and reduce infections, but this enzyme replacement therapy is not a definitive cure. In addition, patients may become resistant or allergic to the drug. Gene therapy, in which a normal ADA gene is inserted into the patient's cells, attempts to correcting the underlying cause of disease. Patients with SCID due to ADA deficiency may be eligible for this study. Patients may or may not have received enzyme replacement therapy or gene transfer therapy, or both. Participants will have follow-up visits at the National Institutes of Health in Bethesda, Maryland, at least once a year for a physical examination, blood tests, and possibly the following additional procedures to evaluate immune function: 1. Bone marrow sampling - A small amount of marrow from the hip bone is drawn (aspirated) through a needle. The procedure can be done under local anesthesia or light sedation. 2. Injection of small amounts of fluids into the arm to study if the patient's lymphocytes respond normally. 3. Administration of vaccination shots. 4. Collection of white blood cells through apheresis - Whole blood is collected through a needle placed in an arm vein. The blood circulates through a machine that separates it into its components. The white cells are then removed, and the red cells, platelets and plasma are returned to the body, either through the same needle used to draw the blood or through a second needle placed in the other arm. 5. Blood drawings to obtain and study the patient's lymphocytes.