14 Clinical Trials for Various Conditions
This is a single arm, Phase II trial involving the use of atezolizumab plus platinum and etoposide for patients with locally advanced urothelial cancer. The primary goal of this trial is to assess the pathologic complete response rate at cystectomy in patients after being treated with a combination therapy of atezolizumab, platinum, and etoposide.
This phase II trial studies how well berzosertib (M6620) works when given in combination with topotecan hydrochloride (topotecan) compared with topotecan alone in treating patients with small cell lung cancer that has come back (relapsed), or small cell cancer that arises from a site other than the lung (extrapulmonary). Drugs used in chemotherapy, such as topotecan hydrochloride, work by damaging the DNA (deoxyribonucleic acid) in tumor cells, causing those cells to die and the tumor to shrink. However, some tumor cells can become less affected by chemotherapy because they have ways to repair the damaged DNA. The addition of M6620 could help topotecan hydrochloride shrink the cancer and prevent it from returning by blocking enzymes needed for DNA repair.
This phase Ib trial studies how well pembrolizumab works with combination chemotherapy in treating participants with small cell/neuroendocrine cancers of the urothelium or prostate that has spread to nearby tissue or lymph nodes or that has spread to other places in the body. Monoclonal antibodies, such as pembrolizumab, may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as etoposide, docetaxel, cisplatin, and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving pembrolizumab with platinum-based chemotherapy may work better in treating participants with small cell/neuroendocrine cancers of the urothelium or prostate.
This phase I trial studies the side effects and best doses of cabozantinib s-malate and nivolumab with or without ipilimumab in treating patients with genitourinary (genital and urinary organ) tumors that have spread from where it first started (primary site) to other places in the body (metastatic). Cabozantinib s-malate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether giving cabozantinib s-malate and nivolumab alone or with ipilimumab works better in treating patients with genitourinary tumors.
Background: Small cell carcinoma of the bladder (SCCB) and other high-grade neuroendocrine tumors (HGNET) of the urinary tract are rare but aggressive cancers. Average survival for people diagnosed with SCCB or HGNET is about 1 year. Lurbinectedin and avelumab are drugs that are approved to treat other cancers. Researchers want to see if these drugs can help people with SCCB or HGNET. Objective: To test lurbinectedin with or without avelumab in people with SCCB or HGNET. Eligibility: Adults aged 18 years and older with SCBB or HGNET that returned and spread after treatment. Design: Participants will be screened. They will have a physical exam. They will have blood tests and imaging scans. They may need to have a new biopsy: A small needle will be used to collect a tissue sample from the tumor. Both study drugs are given through a tube attached to a needle inserted into a vein. If participants have already received a drug like avelumab they will receive only lurbinectedin. If patients have not been previously treated with a drug like avelumab they will receive both lurbinectedin and avelumab. All participants will receive their treatment once every 3 weeks for up to 10 years. They will also receive other drugs to relieve adverse effects. Biopsies, blood tests, and imaging scans will be repeated during some study visits. Participants may also have urine tests and tests of their heart function. Participants may remain in the study as long as the treatment is helping them. If they stop treatment, they will have safety visits 14, 30, and 90 days after their last dose. Additional follow-up visits will continue 5 to 10 years.
This clinical trial studies the effect of cancer directed therapy given at-home versus in the clinic for patients with cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Currently most drug-related cancer care is conducted in infusion centers or specialty hospitals, where patients spend many hours a day isolated from family, friends, and familiar surroundings. This separation adds to the physical, emotional, social, and financial burden for patients and their families. The logistics and costs of navigating cancer treatments have become a principal contributor to patients' reduced quality of life. It is therefore important to reduce the burden of cancer in the lives of patients and their caregivers, and a vital aspect of this involves moving beyond traditional hospital and clinic-based care and evaluate innovative care delivery models with virtual capabilities. Providing cancer treatment at-home, versus in the clinic, may help reduce psychological and financial distress and increase treatment compliance, especially for marginalized patients and communities.
Background: Tumors in the genitourinary tracts can occur in the kidney, bladder, prostate, and testicles and can have common and rare histologies. Some cancers that occur along the genitourinary (GU) tract are rare. Some GU tumors are so rare that they are not included in treatment studies or tissue banks. This makes it hard for researchers to determine standards of care. Researchers want to learn more about common and rare GU tumors. Objective: To learn more about urinary tract cancers. Eligibility: People ages 18 and older with urinary tract or GU cancer such as bladder, kidney, testicular, prostate, penis, or neuroendocrine cancer. Design: Participants will be screened with questions about their medical history. Their medical records will be reviewed. Participants will have a physical exam. They will give blood and urine samples. They will complete a survey about their family cancer history. Clinical photographs will be taken to document skin lesions. Participants may have imaging scans of their chest, abdomen, and pelvis. They may have a contrast agent injected into their arm. Participants will get recommendations about how to best manage and treat their cancer. They can ask as many questions as they would like. Participants will provide existing tumor samples if available. They may have optional tumor biopsies up to twice a year. For needle biopsies, the biopsy area will be numbed and they will get a sedative. A needle will be inserted through their skin to collect a tumor sample. For skin biopsies, their skin will be numbed. A small circle of skin will be removed. Some blood and tumor samples may be used for genetic tests. Participants will have frequent follow-up visits. If they cannot visit NIH, their home doctor will be contacted. They will be followed on this study for life....
This research study is studying a combination of drugs as a possible treatment for rare genitourinary malignancies among four cohorts, bladder or upper tract carcinoma with variant histology, adrenocortical carcinoma, other rare genitourinary carcinomas and any genitourinary carcinoma with neuroendocrine differentiation. Given preliminary results, the study is being tested in additional patients with bladder or upper tract carcinoma with variant histology at this time while the adrenocortical carcinoma, other rare genitourinary malignancies arms have closed to accrual -The names of the study drugs involved in this study are: * Nivolumab * Ipilimumab
Background: Rare tumors of the genitourinary (GU) tract can appear in the kidney, bladder, ureters, and penis. Rare tumors are difficult to study because there are not enough people to conduct large trials for new treatments. Two drugs-sacituzumab govitecan (SG) and atezolizumab-are each approved to treat other cancers. Researchers want to find out if the two drugs used together can help people with GU. Objective: To test SG, either alone or combined with atezolizumab, in people with rare GU tumors. Eligibility: Adults aged 18 years and older with rare GU tumors. These may include high grade neuroendocrine carcinomas; squamous cell carcinoma of the bladder; primary adenocarcinoma of the bladder; renal medullary carcinoma; or squamous cell carcinoma of the penis. Design: Participants will be screened. They will have a physical exam with blood and urine tests. They will have tests of heart function. They will have imaging scans. They may need a biopsy: A small needle will be used to remove a sample of tissue from the tumor. Both SG and atezolizumab are given through a tube attached to a needle inserted into a vein in the arm. All participants will receive SG on days 1 and 8 of each 21-day treatment cycle. Some participants will also receive atezolizumab on day 1 of each cycle. Blood and urine tests, imaging scans, and other exams will be repeated during study visits. Treatment may continue for up to 5 years. Follow-up visits will continue for 5 more years.
Phase I study to examine safety of the addition of concurrent tarlatamab with standard palliative and consolidative RT regimens , with a main cohort of N=20-24 patients with extracranial anatomic radiation sites. I) After lead in of 10 patients demonstrating safety of treatment, allow for expansion to cranial sites of disease (N=6-10) with continued enrollment in main cohort II) If toxicity criteria is not met in concurrent RT tarlatamab cohort, we will continue with sequential RT, either A) delivered within 7 days prior to cycle 1 day 1, or B) delivered during cycle 1 -2 but with pre- and post-RT washout of 7 days with no drug during RT, to examine safety in a temporally spaced setting. III) If sequential tarlatamab and radiation is not deemed safe, we would allow for continued enrollment to assess efficacy of drug sans radiation treatment, enriching for tumors not of small cell lung cancer histology and allowing for patients without sites amenable to RT. A nested phase II study will attempt to assess for ORR and safety of study intervention amongst tumors not of small cell lung cancer histology.
The primary objective of this study, sponsored by Travera Inc. in Massachusetts, is to validate whether the mass response biomarker has potential to predict response of patients to specific therapies or therapeutic combinations using isolated tumor cells from various specimen formats including malignant fluids such as pleural effusions and ascites, core needle biopsies, fine needle aspirates, or resections.
This study is to collect and validate regulatory-grade real-world data (RWD) in oncology using the novel, Master Observational Trial construct. This data can be then used in real-world evidence (RWE) generation. It will also create reusable infrastructure to allow creation or affiliation with many additional RWD/RWE efforts both prospective and retrospective in nature.
The PIONEER Initiative stands for Precision Insights On N-of-1 Ex vivo Effectiveness Research. The PIONEER Initiative is designed to provide access to functional precision medicine to any cancer patient with any tumor at any medical facility. Tumor tissue is saved at time of biopsy or surgery in multiple formats, including fresh and cryopreserved as a living biospecimen. SpeciCare assists with access to clinical records in order to provide information back to the patient and the patient's clinical care team. The biospecimen tumor tissue is stored in a bio-storage facility and can be shipped anywhere the patient and the clinical team require for further testing. Additionally, the cryopreservation of the biospecimen allows for decisions about testing to be made at a later date. It also facilitates participation in clinical trials. The ability to return research information from this repository back to the patient is the primary end point of the study. The secondary end point is the subjective assessment by the patient and his or her physician as to the potential benefit that this additional information provides over standard of care. Overall the goal of PIONEER is to enable best in class functional precision testing of a patient's tumor tissue to help guide optimal therapy (to date this type of analysis includes organoid drug screening approaches in addition to traditional genomic profiling).
International registry for cancer patients evaluating the feasibility and clinical utility of an Artificial Intelligence-based precision oncology clinical trial matching tool, powered by a virtual tumor boards (VTB) program, and its clinical impact on pts with advanced cancer to facilitate clinical trial enrollment (CTE), as well as the financial impact, and potential outcomes of the intervention.