12 Clinical Trials for Various Conditions
The ability to voluntarily move the ankles is important for walking. After spinal cord injury (SCI), this ability is impaired because of changes in the communication between the brain, spinal cord, and body. Whole body vibration (WBV) is a treatment that increases voluntary muscle control and decreases uncontrollable muscle movement in people with SCI. The purpose of this study is to understand how WBV can impact ankle control and uncontrollable muscle movement.
The goal of this clinical trial is to learn if operant conditioning can reduce spasticity in order to improve walking in stroke patient. The main questions it aims to answer are: * Can participants self-regulate reflex excitability * Can participants self-regulate reflex, reduce spasticity and improve walking Participants will undergo surface stimulation to evoke spinal reflexes and will be asked to control these reflexes therefore reducing spasticity. Researchers will compare result to able bodied participants to see if \[insert effects\]
The purpose of this study is to examine the reflex excitability of the rectus femoris in individuals with and without post-stroke Stiff-Knee gait. We use electrical stimulation of the peripheral nerve innervating the rectus femoris for a well-controlled reflex stimulus. We are investigating whether reflex excitability of the rectus femoris correlates with gait kinematics.
This research project is being conducted to investigate changes in secondary impairments, functional mobility skills, and gait variables in children with spasticity following selective percutaneous myofascial lengthening. The research project proposed here will be the first to use instrumented three-dimensional motion analysis to investigate the effects of selective percutaneous myofascial lengthening on gait kinematics and kinetics. The objectives of the study are to: 1. Compare gait kinematics and kinetics in children and young adults with lower extremity spasticity before and after selective percutaneous myofascial lengthening to determine the effects of this procedure on functional mobility. 2. Identify changes in impairments and activity limitations following selective percutaneous myofascial lengthening . 3. Identify changes in a family or caregivers perceived quality of life after their child's selective percutaneous myofascial lengthening . The aim of this study is to identify and describe the specific changes in secondary musculoskeletal impairments, activity limitations, and gait kinematics and kinetics after a selective percutaneous myofascial lengthening procedure. Gait kinematics and kinetics includes the motion of joints and body segments, and force and power, at each lower extremity joint, respectively. The results of this study will provide preliminary information on how this form of soft tissue lengthening affects functional mobility skills in children with spasticity. The study is expected to run for two years and the primary study endpoint is when participants have completed their second post- operative data collection session.
Physical therapists use dry static cupping for the treatment of many conditions, including spasticity for patients post-stroke. While research better describes the effects of dry static cupping for patients with orthopedic conditions, information is lacking on central conditions, such as stroke and resulting spasticity.
This project will develop the first sensor-based mobile Pelvic Assist Device (mPAD) that can deliver precise, adaptable, pelvic control to restore natural coordination of upper- and lower-limb movements during gait in children with Cerebral Palsy
The goal of this proposal is to mitigate the typical decline in walking function experienced by children with cerebral palsy (CP) via a Functional Electrical Stimulation (FES)-assisted treadmill training intervention. In this study, the investigators intend to use thier CP FES Gait Training System to assess the neurotherapeutic effects of an FES-assisted treadmill training intervention on walking performance in children with CP. The research design consists of a randomized, controlled, two-treatment study in which the control subjects will cross-over into one of the two treatment groups. An FES-assisted training group will undergo twelve weeks of FES-assisted treadmill training using a distributive practice protocol consisting of alternating bouts of walking with and without FES assistance, followed by over ground walking reinforcement. A treadmill-only training group will undergo the same training regimen without FES-assistance. Finally, a non-intervention group will serve as a control. The investigators will analyze treatment efficacy via functional and biomechanical and measures collected pre-training, post-training and after a twelve-week follow-up period.
The main purpose of this investigation is to evaluate the effect of a lower leg brace on walking efficiency and community walking in people who have weakness in one side of the body caused after a stroke. The evaluation will consist of several tests that will evaluate movement, tightness, balance and sensation in affected leg.
Stroke survivors experience motor deficits, weak voluntary muscle activations, and low weight-bearing capacity that impair ambulation. Restoring motor function is a priority for people post-stroke, whose gait patterns are slow, and metabolically inefficient. The role of the ankle is crucial for locomotion because it stores mechanical energy throughout the stance phase, leading to a large activation of plantarflexor muscles during push-off for propulsion. After a stroke, paretic plantarflexors undergo changes in their mechanics and activation patterns that yield diminished ankle power, propulsion, and gait speed. Recovery of lost plantarflexor function can increase propulsion and mitigate unnatural gait compensations that occur during hemiparetic walking. In the stance phase, dorsiflexion is imposed at the ankle and the plantarflexors are loaded, which results in excitation of group Ia and II afferents, and group Ib afferents. Load sensing Ib afferents are active in mid-late stance, and through spinal excitatory pathways, reinforces the activation of plantarflexors and propulsive force generation at the ankle. Targeting the excitability of the load sensitive Ib excitatory pathway, propulsive soleus activity and resulting force generation (and thereby gait speed) can be improved after stroke. The long-term research goal is to develop a novel hybrid gait paradigm integrating operant conditioning and powered wearable devices to advance neuro-behavioral training and enhance locomotor ability after stroke. The overall objectives are to 1) modulate the soleus muscle loading response within the stance phase, and 2) develop a dynamic protocol to operantly condition the soleus response in stroke survivors. The central hypothesis is that enhancing the soleus loading response in mid-late stance phase through operant up-conditioning can increase plantarflexor power and forward propulsion after stroke. In working towards attaining the research objective and testing the central hypothesis, the objective of this pilot study is to modulate the soleus loading response in the stance phase during treadmill walking. The specific aims in this study are to 1) apply ankle perturbations in mid-late stance phase combining a control algorithm and a powered device to characterize the changes in soleus EMG between perturbed and unperturbed (i.e., when no perturbations are applied) step cycles in 15 able-bodied individuals; and 2) determine the feasibility of the wearable ankle device and its algorithm in 5 participants with hemiparesis and gait deficits due to a stroke. The testing of the device and its algorithm will provide foundational evidence to adjust the soleus stimuli continuously and reliably, and develop the new walking operant conditioning protocol for stroke survivors. An expected outcome in this pilot is to lay the groundwork to develop the soleus up-conditioning protocol as a potential strategy to improve paretic leg function. If successfully developed, this new protocol proposed in a subsequent study will be the first neurobehavioral training method that targets spinal load-sensitive pathways to improve ankle plantarflexor power and forward propulsion after stroke.
Participants are being asked to participate in a research study conducted by Shih-Chiao Tseng, PT, Ph.D. at Texas Woman's University. This research study is to determine whether low-intensive brain stimulation can enhance learning of a leg movement task. The investigators also want to know if brain stimulation can improve the nerve function and walking performance. Our goal is to understand any relationship between brain stimulation and overall movement control improvement. Participants have been invited to join this research if they have had a stroke before or they are healthy adults aged 21 years or older. Research evidence shows stroke can induce permanent brain damage and therefore may cause a person to have trouble learning a new task. This in turn may significantly impact the recovery of motor function in stroke survivors. In addition, the investigators also want to know how a healthy person learns this new leg task and see if her/his learning pattern differs from a stroke survivor. This study comprises two phases: Phase I study investigates short-term effects of brain stimulation on leg skill learning and only requires two visits to TWU. The total time commitment for Phase I study will be about 6.5 hours, 3.5 hours on the first visit and three hours on the second visit; Phase II study is an expanded version of Phase I study to investigate long-term effects of brain stimulation on leg skill learning and requires to complete 12 visits of exercise training paired with brain stimulation over a four-week period and additional one visit for follow-up test. The total time commitment for Phase II study will be about 20 hours, a total of 18 hours for 12 exercise training sessions and two hours for a follow-up test. The investigators hypothesize that people with chronic stroke will show a slower rate of acquiring this leg skill as compared to healthy adults. The investigators also hypothesize that co-applying brain stimulation with 12 sessions of exercise training will enhance skill learning of this leg task for people with chronic stroke and this 12-session exercise program may exert beneficial influences on the nerve function and leg muscle activation, and consequentially improve motor control for walking.
Ambulatory children with cerebral palsy (CP) walk predominately in low intensity stride rates with little variability, thus limiting their walking activity and ability to participate in daily life. In contrast, typically developing (TD) children engage in short bursts of intense walking activity interspersed with varying intervals of low intensity walking within daily life. In order to optimize motor learning, active participation, task-specific training and multiple repetitions or massed practice is required to learn new motor skills. Short bursts of vigorous intensity locomotor treadmill training (SBLTT) alternating with low/moderate intensity was specifically designed to mimic activity patterns of TD children in a massed practice format. Pilot data suggests that SBLTT is feasible and enhances walking capacity and performance in daily life for children with CP. This project will examine the effect of SBLTT versus an equivalent dosage of traditional locomotor treadmill training (TLTT) on the primary outcomes of walking capacity and performance in children with CP and whether the effects of SBLTT on walking capacity and performance are mediated by improvements in in muscle power generation. The scientific premise is that SBLTT, that approximates the walking intensity patterns of typically developing (TD) children through a home-based massed practice protocol, will be more effective than TLTT in improving walking capacity and performance. We hypothesize that SBLTT strategies for children with CP modeled on walking patterns of TD children, will be positively mediated by muscle power generation and subsequently improve walking capacity and community walking performance and mobility. Specific aims. Aim #1. Determine the immediate and retention effects of short-burst interval LTT (SBLTT) on walking capacity in ambulatory children with CP. Aim #2. Examine the effects of treatment on community-based walking activity performance and mobility. Aim #3. Explore whether the effects of SBLTT on walking capacity and performance are mediated by muscle power generation. The proposed research will be the first step in a continuum of research that is expected to direct locomotor training protocols and rehab strategies across pediatric disabilities and positively effecting the community walking performance and mobility for children with CP.
This study will classify types of hypertonia in patients with cerebral palsy and determine if the classifications are reasonable in relation to the functional task of walking. Hypertonia is an abnormal increase in muscle tension. It is a common symptom of cerebral palsy that can lead to loss of function and deformity. This study may help scientists improve evaluation criteria for hypertonia and, ultimately, treatment results. Patients with cerebral palsy who are older than 6 years of age may be eligible for this study. Candidates are screened with a medical history and clinical evaluation. Participants are asked to walk in the lab while cameras record their movement. During this test, subjects wear a t-shirt and shorts with their arms and legs wrapped with a soft, rubber-like material. A piece of firm material is attached to the rubber sleeves and small plastic reflective balls are attached to the firm material. Balls may also be attached to the skin, using an adhesive. With the balls in place, the subject walks several times while cameras record the positions of the balls. In addition, small metal electrodes attached to the skin with an adhesive measure the electrical activity in the muscles. After the walking test is completed, subjects' leg muscle strength is measured with a special device while they perform three activities. First, they sit on a special chair with their leg and foot placed in an apparatus that measures their strength, then lie on their back, then on their stomach, and then stand on one foot holding a bar to balance during part of one activity. During the activities, their reflexes are tested, they are asked to move their legs, and their legs are moved for them.