Treatment Trials

116 Clinical Trials for Various Conditions

Focus your search

COMPLETED
Evaluation of Vision-Guided Shared Control for Assistive Robotics Manipulators
Description

The purpose of this study is to evaluate a new control (i.e., the vision-guided shared control) for a wheelchair-mounted assistive robotic manipulator among powered wheelchair users. This study will consist of a questionnaire about general demographics, health information, and previous experience with assistive technology. Several tests will also be administered to test upper extremity function and ability as well as to test spatial orientation and visualization ability. Participants till then undergo a training phase with the assistive robotic manipulator mounted on a table to assess if they will be eligible for participation in the study. Eligible participants will move on to a second training phase where they will be asked to learn and practice slightly more complex tasks while using the vision-guided shared controller. After this training the assistive robotic manipulator will be mounted to the participants wheelchair and they will be asked to complete a number of everyday tasks from a task list. At the conclusion of the study, researchers will conduct a brief semi-structured interview with each participant and obtain more insight on how participants perceive the ease-of-use and usefulness of the vision-guided shared control.

RECRUITING
Effectiveness of the Collaborative Community Clinic for Persons With Spinal Cord Injury and Disease
Description

The investigator is evaluating data stored on the Collaborative Community Clinic data repository (IRB #201811032). Researchers seek to evaluate the effectiveness of the Collaborative Community Clinic (CCC), an occupational therapy student experiential learning clinic for uninsured or under-insured people with spinal cord injury and disease (SCI/D), using participants' initial and follow-up assessment batteries.

COMPLETED
Development of a Self- Management Program for Parents With Spinal Cord Injury and Disease
Description

The purpose of this project was to develop and pilot test a self-management program targeted toward individuals with Spinal Cord Injury/Disease (SCI/D) who are current parents or who are considering becoming parents. This Parenting Self-Management Program (PSMP) will allow parents to identify their goals for successful family participation and provide a structure for professionals to use when working with parents with SCI/D to best meet their needs. A draft PSMP was assembled by members of the research team. This draft was reviewed by experienced parents with SCI/D and professionals who work with individuals who have SCI/D through key informant interviews or focus groups. The feedback was used to modify the draft program and the PSMP was pilot tested with a group of 10 individuals with SCI/D who are new parents, newly injured or who want to improve their participation in parenting activities.

COMPLETED
Caring Connections: a Program to Alleviate Social Isolation and Loneliness in Individuals Living with Spinal Cord Injury
Description

This study will use a randomized controlled design with an active attention control group to evaluate an intervention intended to reduce social isolation and loneliness in persons with SCI/D. The intervention, Caring Connections, is a peer-based intervention which is important because peers with SCI/D play an important role in improving quality of life, mental health, and social health in persons with SCI/D.

RECRUITING
Mobile Manual Standing Wheelchair for SCI
Description

People with spinal cord injuries (SCI) are particularly prone to complications from excessive sitting, because many are not able to stand without support. Excessive sitting after SCI is believed to contribute to pressure injuries, pain, osteoporosis, joint stiffness, spasticity, and worsening bowel and bladder function. The VA has developed, patented, and licensed a mobile manual standing wheelchair (MMSW), and the investigators believe the key feature of being able to wheel around while in a standing position will dramatically change how paralyzed Veterans function in their home and community. If this expanded utility is realized, persons with SCI may naturally spend more time standing and less time sitting. To test these ideas, Veterans with SCI will be randomized to using one of two manual standing wheelchairs at home and in the community for two months.

COMPLETED
Cardiac Disease and the Electrocardiogram in SCI Patients
Description

The purpose of this three-year study is to determine the prevalence and incidence of the different types of cardiac disease and ECG abnormalities in SCI patients. Study goals are: (i) delineation of the specific types of heart disease that occur in the SCI population as manifested both pre-clinically and clinically and (ii) demonstration of their association with ECG findings. This will enable validation of scores and algorithms using the inexpensive and widely available ECG for the prevention of heart disease as well as it's early treatment and rehabilitation in SCI patients. The findings will be helpful in demonstrating what cardiological tests are appropriate for the mandated annual evaluation of SCI patients.

COMPLETED
Home-Based Diagnosis and Management of Sleep-Related Breathing Disorders in Spinal Cord Injury
Description

* Patients with spinal cord injury (SCI) usually breathe without any mechanical assistance, but significant breathing problems occur often during sleep, either because the upper airway closes (obstructive sleep apnea; OSA), or because of weakness/paralysis of the breathing muscles. These problems often go unrecognized, as SCI patients face logistical barriers that cause them to refuse appropriate testing in sleep laboratories. We have devised a strategy for diagnosing sleep-disordered breathing in the patient's home, using placement of noninvasive devices that monitor breathing overnight. This project is designed to test the feasibility and utility of this strategy. * After collecting baseline data on symptoms and medical events for four months, the home-based studies are performed noninvasively with FDA-approved devices: a type III sleep system and a recording oxygen saturation/ transcutaneous carbon dioxide monitor. If these studies identify sleep-disordered breathing, noninvasive ventilatory support is prescribed according to standard clinical practice. Over the following twelve months, the subjects monitor their symptoms daily, and answer quality-of-life questionnaires every three months. After 3, 6, and 12 months, blood tests are performed to measure blood sugar and cholesterol/lipids. Data is downloaded from the ventilator device to monitor compliance and ventilator performance. This study is designed to determine the prevalence of sleep-disordered breathing in SCI, the feasibility of home-based testing to establish the diagnosis, and the short term effects on symptoms, quality-of-life, and associated conditions (glucose intolerance, blood lipid disorders).

COMPLETED
Nutrition Education for Cardiovascular Disease Prevention in Spinal Cord Injury
Description

This is a randomized controlled trial to study a nutrition education intervention in individuals with spinal cord injuries both in the acute rehabilitation setting (n = 100) and the community setting (n = 100). Participants in the treatment group will receive six interactive nutrition lectures based upon a successful program that has been used in older adults titled "Eat Smart, Stay Well". The goals of intervention are to improve whole-grain, fruit and vegetable, and low-fat dairy intake and reduce fat and saturated fat intake. Secondary outcomes will include improvements in waist circumference of body mass index and some biomarkers such as cholesterol and blood sugar.

COMPLETED
Coronary Artery Calcification Score and Risk Factors for Coronary Artery Disease in Persons With Spinal Cord Injury
Description

Although conventional risk factors for coronary heart disease (CHD) have been identified and routinely used to determine risk for CHD in the general population, a systematic approach to determine population-specific risk for CHD has not been performed prospectively in those with SCI. CHD is a leading cause of death in spinal cord injury, occurring at younger ages than in the able-bodied population. Conventional risk factors for CHD are high serum concentrations of low-density lipoprotein (LDL), low serum concentrations of high-density lipoprotein (HDL), diabetes mellitus (DM), positive smoking history, and positive family history of premature CHD. Coronary Artery calcification (CAC) is a commonly occurring phenomenon that does not necessarily indicate significant obstructive disease. Studies have shown that a strong association exists between coronary calcification and coronary heart disease. The purpose of this study is to compare the CAC scores in persons with SCI with a historical control group of able-bodied persons from a national data base who will be matched for conventional risk factors for coronary artery disease (CAD) and to determine the relationship between CAC scores and conventional and emerging risk factors for CAD. Additionally, postprandial lipemic (elevated levels of lipids following ingestion of food) responses among individuals with SCI and control subjects will be compared, as well as the response of inflammatory markers following a high fat meal. Participants will only be tested once for these parameters.

COMPLETED
Cardiometabolic Risk, Obesity and Cardiovascular Disease in People With Spinal Cord Injury
Description

The purpose of this study is to develop and field-test new tools for diagnosis and hazard assessment of cardiometabolic risk (CMR) in people with chronic spinal cord injury (SCI) and to advance the evidence base with much needed information on CMR and cardiovascular disease (CVD) burden in people with SCI. These data can be used to develop screening guidelines for early identification and prevention of CMR in SCI, as well as targeted approaches to primary disease management.

NOT_YET_RECRUITING
UTSW NORC Pilot Spinal Cord Injury Dietary Program
Description

The goal of this observational study is to learn about the effects of a 9-week dietician-guided program modified from the National Diabetic Prevention Program (modified DPP-diet) in people with spinal cord injury on body composition and insulin sensitivity. The main question it aims to answer is: Does 9 week modified DPP-diet reduce body fat percentage and insulin resistance? Participants will: Have 9 weeks of Telehealth visit with dietician certified in providing DPP. Visit the laboratory before, immediately and 9 weeks after completion of the modified DPP-diet. Share with the researcher on the perceived benefit and obstacles in implementing the modified DPP-diet as part of their daily activities.

RECRUITING
Virtual Walking Therapy for Neuropathic Pain Following Incomplete Spinal Cord Injury
Description

The purpose of this study is to determine if playing a virtual reality walking game can help improve neuropathic pain in adults with incomplete spinal cord injury.

RECRUITING
The Effects of an Acute High-intensity Exercise on Heart and Brain Function in People With Spinal Cord Injury
Description

The heart and brain are regulated by the autonomic nervous system. Control of these organs can be disrupted in people with spinal cord injury (SCI). This may affect their ability to regulate blood pressure during daily activities and process the high-level information. Previous studies show that high-intensity exercise induces better outcomes on heart and information processing ability in non-injured people compared to moderate-intensity exercise. However, it is unknown the effects of high-intensity exercise on heart and brain function in people with SCI. Therefore, this study aims to examine the effects of a single bout of high-intensity interval training on heart and brain function in this people with SCI compared to age- and sex-matched non-injured controls.

RECRUITING
Spinal Cord Stimulation for Respiratory Rehabilitation in Patients With Chronic Spinal Cord Injury
Description

Respiratory complications are among the leading causes of death in patients with chronic spinal cord injury (SCI). Our previous work showed that pulmonary function can be improved by using our original respiratory training method. However, the effectiveness of this intervention is limited due to the disruption of brain-spinal connections and consequently lowered spinal cord activity below the injury level. Our recent studies showed that electrical stimulation of the spinal cord below the level of injury leads to increased ventilation which indicates activation of the spinal cord structures related to respiration. These findings indicate that spinal cord stimulation can be a promising therapeutic additive to the treatment. The goal of this study is to justify the establishment of a new direction in rehabilitation for patients with SCI by using a non-invasive spinal cord stimulation in combination with respiratory training. Our aims are: 1) to evaluate the effects of such stimulation applied to the injured spinal cord on pulmonary function and respiratory muscle activity, and 2) to evaluate the effectiveness and therapeutic mechanisms of the spinal cord stimulation combined with respiratory training. Thirty-six individuals with chronic SCI will be recruited and assigned to three groups to receive respiratory training or spinal cord stimulation alone or a combination of them. All participants will be tested before and after cycles of experimental procedures with/or without stimulation. Our hypotheses will be confirmed if the respiratory training combined with spinal cord stimulation results in the most enhanced positive effects.

RECRUITING
Remotely Delivered Cognitive Multisensory Rehabilitation for Sensory and Motor Recovery After Spinal Cord Injury
Description

So far, therapies have limited success in functional recovery in adults with chronic SCI. By introducing remote cognitive multisensory rehabilitation (CMR), which has shown significant functional improvements due to neurological recovery when delivered in-person, transformative results that (i) provide a potentially effective new therapy within the healthcare system, accessible to more patients, and (ii) demonstrate brain function changes alongside improved function in chronic SCI are anticipated. The results will inform and justify a large scale federally funded clinical trial.

RECRUITING
Spinal Cord Transcutaneous Stimulation Effect on Blood Pressure in Acute Spinal Cord Injury (SCI)
Description

The goal of this clinical trial is to evaluate the effect of transcutaneous spinal cord stimulation on blood pressure in individuals with an acute spinal cord injury (within 30 days of injury). Blood pressure instability, specifically orthostatic hypotension (a drop in blood pressure when moving lying flat on your back to an upright position), appears early after the injury and often significantly interferes with participation in the critical rehabilitation time period. The main questions it aims to answer are: 1. Can optimal spinal stimulation increase blood pressure and resolve orthostatic symptoms (such as dizziness and nausea) when individuals undergo an orthostatic provocation (a sit-up test)? Optimal stimulation and sham stimulation (which is similar to a placebo treatment) will be compared. 2. What are the various spinal sites and stimulation parameters that can be used to increase and stabilize blood pressure to the normal range of 110-120 mmHg? Participants will undergo orthostatic tests (lying on a bed that starts out flat and then moved into an upright seated position by raising the head of bed by 90° and dropping the base of the bed by 90° from the knee) with optimal and sham stimulation, and their blood pressure measurements will be evaluated and compared.

RECRUITING
Evaluating Long-term Use of a Pediatric Robotic Exoskeleton (P.REX/Agilik) to Improve Gait in Children With Movement Disorders
Description

Background: People with cerebral palsy, spina bifida, muscular dystrophy, or spinal cord injury often have muscle weakness and problems controlling how their legs move. This can affect how they walk. The NIH has designed a robotic device (exoskeleton) that can be worn on the legs while walking. The wearable robot offers a new form of gait training. Objective: To learn whether a robotic device worn on the legs can improve walking ability in those with a gait disorder. Eligibility: People aged 3 to 17 years with a gait disorder involving the knee joint. Design: Participants will be screened. They will have a physical exam. Their walking ability will be tested. Participants will have markers taped on their body; they will walk while cameras record their movements. They will undergo other tests of their motor function and muscle strength. The study will be split into three 12-week phases. During 1 phase, participants will continue with their standard therapy. During another phase, participants will work with the exoskeleton in a lab setting. Their legs will be scanned to create an exoskeleton with a customized fit. The exoskeleton operates in different modes: in exercise mode, it applies force that makes it difficult to take steps; in assistance mode, it applies force meant to aid walking; in combination mode, it alternates between these two approaches. During the third phase, participants may take the exoskeleton home. They will walk in the device at least 1 hour per day, 5 days per week, for 12 weeks. Participants walking ability will be retested after each phase....

RECRUITING
The Effect of Transcutaneous Stimulation on Blood Pressure in Spinal Cord Injury (SCI)
Description

This project will investigate the effect of spinal cord transcutaneous stimulation on blood pressure in individuals with a chronic spinal cord injury who experience blood pressure instability, specifically, orthostatic hypotension (a drop in blood pressure when moving from lying flat on your back to an upright position). The main questions it aims to answer are: 1. What are the various spinal sites and stimulation parameters that normalize and stabilize blood pressure during an orthostatic provocation (70 degrees tilt)? 2. Does training, i.e., exposure to repeated stimulation sessions, have an effect on blood pressure stability? Participants will undergo orthostatic tests (lying on a table that starts out flat, then tilts upward up to 70 degrees), with and without stimulation, and changes in their blood pressure will be evaluated.

TERMINATED
The Effect of Acute Exercise on Cardiac Autonomic, Cerebrovascular, and Cognitive Function in Spinal Cord Injury
Description

The aims of this proposal are to: 1) investigate whether individuals with spinal cord injury (SCI) demonstrate cardiac autonomic, cerebrovascular, and cognitive dysfunctions compared to non-injured age- and sex-matched controls in the following conditions: supine rest and head-up tilt/face-cooling test; 2) examine if autonomic completeness/ incompleteness, physical activity, and psychological distress are predictors for dysfunctions during supine rest and head-up tilt/face cooling conditions in SCI individuals; 3) examine if one bout of moderate-intensity aerobic exercise temporarily improves cardiac autonomic and cerebrovascular functions and thereby improves cognition when in supine rest and head- up tilt/face cooling conditions. The study will include an initial visit and an experimental visit to our lab. Three groups of participants will be included in this study: Group 1, SCI with acute exercise; group 2, SCI with rest-control; and group 3, age- and sex-matched non-injured individuals. Cardiovascular variables, such as heart rate variability, blood pressure variability, and cerebrovascular variables, such as cerebral blood flow velocity and oxygenated hemoglobin, and cognitive performance will be examined. The investigator hypothesizes that individuals with SCI will have impaired cardiac autonomic, cerebrovascular, and cognitive functions compared to the non-injured controls, and an acute exercise can improve those functions. Autonomic completeness/incompleteness, physical activity, and psychological distress are significant factors that predict cardiac autonomic, cerebrovascular, and cognitive functions in individuals with SCI.

ACTIVE_NOT_RECRUITING
CEUS For Intraoperative Spinal Cord Injury
Description

Spinal cord injury following posterior decompression in patients suffering from chronic, cervicothoracic spinal cord compression is a known complication with multiple etiologies. Currently, intraoperative neuromonitoring (IONM) remains the gold standard for predicting and preventing post-operative deficits from these procedures. However, there is a paucity in the field of spine surgery for further, non-invasive biomarkers that can help detect and prognosticate the degree of spinal cord injury intraoperatively. Contrast enhanced ultrasound (CEUS) is a radiation free imaging modality that utilizes nanobubble technology to allow for visualization of the macro- and microvascular architecture of soft tissue structures. Despite being currently approved for the use in hepatology and cardiology, it has remained absent from the field of spinal cord injury. The study team aims to evaluate and quantify micro- and macrovascular changes that lead to areas of hyper-perfusion as well as areas of ischemia intraoperatively in patients that undergo elective cervicothoracic posterior decompression for chronic compression. In addition, the study team aims to assess the efficacy of CEUS in detecting microvascular changes that correlate with IONM changes and predicting degree and recovery of post-operative neurologic deficits from intraoperative spinal cord injury. The study team hypothesizes that following decompression, subjects will have detectable levels of microvascular changes causing areas of hypoperfusion and reperfusion injury. Second, the study team hypothesizes that these perfusion changes will correlate with intraoperative neuromonitoring changes and can predict and prognosticate the degree of post-operative neurologic injury.

RECRUITING
Brief Prolonged Exposure Therapy Versus Clinical Standard to Reduce Posttraumatic Stress Post Spinal Cord Injury
Description

This study will examine the use brief prolonged exposure (Brief PE) therapy compared to standard clinical care to reduce posttraumatic distress among people who have had a spinal cord injury and are receiving rehabilitation in an inpatient setting.

COMPLETED
Transcutaneous Stimulation in Spinal Cord Injury
Description

Cardiovascular disease has become the leading cause of death in the spinal cord injury population. Increased reliance on the renin-angiotensin-aldosterone system (RAAS) is believed to decrease falls in blood pressure when moving from a laying down position to upright; however, findings in the general population link the RAAS with remodeling and restructuring of the arterial walls. Therefore, intervention to stabilize and normalize blood pressure should be a priority in individuals with spinal cord injury who have low blood pressure. Advances in stimulation on the skin of the spinal cord offer an approach to restore cardiovascular control and improve blood pressure regulation; however, electrode placement and stimulation parameters needed to increase blood pressure are not well understood. Therefore, the aim of the study is to identify placement of electrodes on the skin, and frequency and amplitude of the stimulation to regulate blood pressure.

UNKNOWN
Comparison of Two Web-Based Education/Support Programs for Partner Caregivers of People With Spinal Cord Injury
Description

The purpose of this research study is to compare the effect of two different types of education and support programs for partner caregivers of people with spinal cord injury (SCI).

RECRUITING
Locomotor Training With Testosterone to Promote Bone and Muscle Health After Spinal Cord Injury
Description

This pilot study will determine the feasibility of implementing a combinatory rehabilitation strategy involving testosterone replacement therapy (TRT) with locomotor training (LT; walking on a treadmill with assistance and overground walking) in men with testosterone deficiency and walking dysfunction after incomplete or complete spinal cord injury. The investigators hypothesize that LT+TRT treatment will improve muscle size and bone mineral density in men with low T and ambulatory dysfunction after incomplete or complete SCI, along with muscle fundtion and walking recovery in men with T low and ambulatory dysfunction ater incomplete SCI.

UNKNOWN
Outcomes After Spinal Cord Injury (OASIS)
Description

The study evaluates the effectiveness of Prolonged Exposure Therapy on a population of individuals with spinal cord injuries. Participants will be randomly assigned to either a treatment as usual or Prolonged Exposure therapy group.

ACTIVE_NOT_RECRUITING
Walking Rehabilitation After Spinal Cord Injury: Locomotor Training Using Adaptive Robotics
Description

Locomotor training is an established rehabilitation approach that is beneficial for improving walking function in individuals with spinal cord injuries (SCIs). This approach focuses on repetitive practice and appropriate stepping movements to activate spinal neural networks and promote rhythmic motor output associated with walking. Assistance with stepping movements is often provided by physical therapists and trainers, but this can be costly and difficult to deliver in the cost-constrained U.S. healthcare market. Robotic devices have been used as an alternate method to deliver locomotor training, but current robotic approaches often lack the natural movement variations that characterize normal human stepping. Furthermore, studies to compare locomotor training approaches have not shown any specific benefits of using robotic devices. A new type of robotic device has emerged that uses an individual's muscle activation and stepping movements to control the robot during walking. This adaptive robotic device adjusts to the user's intentions and can assist with stepping during locomotor training in a manner that matches natural human stepping. While this type of adaptive robot has been preliminarily tested, the safety and efficacy of locomotor training using adaptive robotics are not well-established in patients with SCI. This is a critical step to determine if individuals with SCI may benefit from use of this device and for preliminary adoption of this technology. Recent studies have used the Cyberdyne Hybrid Assistive Limb (HAL) to deliver locomotor training and have reported outcomes suggesting that the HAL adaptive robot is safe and efficacious for walking rehabilitation in European SCI patients. Therefore this study will use the HAL adaptive robot to deliver locomotor training. This research is necessary to determine if use of the HAL is potentially beneficial and warranted for use with locomotor training and SCI patients receiving care in the U.S. Results of this study may contribute to the development and implementation of effective walking rehabilitation approaches for people with SCIs.

COMPLETED
Gentamicin Bladder Instillations to Prevent Urinary Tract Infections in Patients With Spinal Cord Injury
Description

A non-randomized study evaluating the efficacy of intravesical gentamicin on the occurrence rate of urinary tract infections and bladder complications in patients after spinal cord injury (SCI), and to assess its effectiveness in promoting overall quality of life (QOL), community living, and participation.

ENROLLING_BY_INVITATION
Stem Cell Spinal Cord Injury Exoskeleton and Virtual Reality Treatment Study
Description

The SciExVR study will evaluate the potential benefit of autologous bone marrow derived stem cells (BMSC) in the treatment of spinal cord injury with evidence of impaired motor or sensory function. The treatment consists of bilateral paraspinal injections of the BMSC at the level of the injury as well as superior and inferior to that spinal segment followed by an intravenous injection and intranasal placement. Patients undergoing BMSC treatment may also be assigned to use of exoskeletal movement (or equivalent) or virtual reality visualization (or equivalent) to augment upper motor neuron firing and/or receptivity of the sensory neurons. http://mdstemcells.com/sciexvr/

COMPLETED
Metabolic Health in Individuals With Spinal Cord Injury (SCI)
Description

Individuals with spinal cord injury (SCI) live longer than before and live to an age where metabolic disorders become highly prevalent. Due to loss of mobility and severe skeletal muscle atrophy, obesity, glucose intolerance, and peripheral insulin resistance develop soon after the onset of SCI. These abnormalities are thought to contribute to the increased diabetes disease risk and accelerated aging process in the SCI population. As a result of these trends, overall burden of complications, economic impact and reduced quality of life are increasing. Until there are effective treatments for SCI, it is imperative to develop effective interventions to mitigate metabolic disorders that develop in individuals with SCI. The proposed research project examines the impact of early utilization of a novel neuromuscular electrical stimulation (NMES) program on skeletal muscle metabolism and overall metabolic health in individuals with sub-acute, complete SCI.

UNKNOWN
Micro-Fragmented Adipose Tissue (Lipogems®) Injection for Chronic Shoulder Pain in Persons With Spinal Cord Injury
Description

Rotator cuff disease (i.e., rotator cuff tendinopathy or tear) is a common cause of shoulder pain in persons with chronic spinal cord injury (SCI). It usually resolves with non-operative treatments such as pharmacological agents and physical therapy; however, when this fails, rotator cuff surgery may be the only option. Autologous adipose tissue injection has recently emerged as a promising new treatment for joint pain and soft tissue injury. Adipose can be used to provide cushioning and filling of structural defects and has been shown to have an abundance of bioactive elements and regenerative perivascular cells (pericytes). The purpose of this study is to explore the safety and efficacy of autologous, micro-fragmented adipose tissue (Lipogems®) injection under ultrasound guidance for chronic shoulder pain in persons with SCI.