40 Clinical Trials for Various Conditions
This study will use a randomized controlled design with an active attention control group to evaluate an intervention intended to reduce social isolation and loneliness in persons with SCI/D. The intervention, Caring Connections, is a peer-based intervention which is important because peers with SCI/D play an important role in improving quality of life, mental health, and social health in persons with SCI/D.
People with spinal cord injuries (SCI) are particularly prone to complications from excessive sitting, because many are not able to stand without support. Excessive sitting after SCI is believed to contribute to pressure injuries, pain, osteoporosis, joint stiffness, spasticity, and worsening bowel and bladder function. The VA has developed, patented, and licensed a mobile manual standing wheelchair (MMSW), and the investigators believe the key feature of being able to wheel around while in a standing position will dramatically change how paralyzed Veterans function in their home and community. If this expanded utility is realized, persons with SCI may naturally spend more time standing and less time sitting. To test these ideas, Veterans with SCI will be randomized to using one of two manual standing wheelchairs at home and in the community for two months.
The purpose of this three-year study is to determine the prevalence and incidence of the different types of cardiac disease and ECG abnormalities in SCI patients. Study goals are: (i) delineation of the specific types of heart disease that occur in the SCI population as manifested both pre-clinically and clinically and (ii) demonstration of their association with ECG findings. This will enable validation of scores and algorithms using the inexpensive and widely available ECG for the prevention of heart disease as well as it's early treatment and rehabilitation in SCI patients. The findings will be helpful in demonstrating what cardiological tests are appropriate for the mandated annual evaluation of SCI patients.
Individuals who suffer a spinal cord injury in the neck region have difficulty using their hands due to paralysis and/or weakness of their arms and hand muscles. This project aims to test the effects of pairing spinal cord and nerve stimulation combined with physical therapy training in recovering arms and hand function. The long-term goal is to provide better therapies that will improve the ability of individuals with spinal cord injuries to use their arms and hands to perform everyday tasks, similar to injury before.
Individuals with spinal cord injury have heart attacks and strokes more frequently, and much earlier in life. People with spinal cord injuries develop plaque in vessels much faster, and the reasons why are unclear. Doctors generally attributed the increased risk with weight gain and developing diabetes, but many studies have shown that even without these common factors, plaque in vessels is developing more often and faster. Endothelial cells are a single layer of cells that line all vessels in the body and plays an important role in vessel health. Damage to endothelial cells is known to lead to heart attacks and strokes. Past studies on endothelial cells of people with spinal cord injury have been unclear. The investigators have new data that these cells are unhealthy after spinal cord injury a measurement. This includes measuring endothelial health by directly altering its function using a catheter in the arm and measuring small particles in blood called endothelial microvesicles. If the project is successful, the investigators will learn important information on the health of endothelial cells after spinal cord injury. The investigators will also be able to use these markers of endothelial cell function to create treatments to improve vessel health and prevent heart attacks and strokes later in life in people with spinal cord injury.
Current forms of pharmacologic and non-pharmacologic treatments for hypotension and orthostatic hypotension (OH) remain inadequate during acute inpatient rehabilitation (AIR) following a traumatic spinal cord injury (SCI). A critical need exists for the identification of safe, practical, and effective treatment options that stabilize blood pressure (BP) after traumatic SCI. Recent published evidence suggests that transcutaneous Spinal Cord Stimulation (TSCS) can be used to raise seated BP, and mitigate the falls in BP during orthostatic repositioning in individuals with chronic SCI. This site-specific project will focus on the use of TSCS to stabilizing seated BP and mitigate the fall in BP during orthostatic repositioning during AIR following traumatic SCI.
The goal of this clinical trial is to evaluate the effect of transcutaneous spinal cord stimulation on blood pressure in individuals with an acute spinal cord injury (within 30 days of injury). Blood pressure instability, specifically orthostatic hypotension (a drop in blood pressure when moving lying flat on your back to an upright position), appears early after the injury and often significantly interferes with participation in the critical rehabilitation time period. The main questions it aims to answer are: 1. Can optimal spinal stimulation increase blood pressure and resolve orthostatic symptoms (such as dizziness and nausea) when individuals undergo an orthostatic provocation (a sit-up test)? Optimal stimulation and sham stimulation (which is similar to a placebo treatment) will be compared. 2. What are the various spinal sites and stimulation parameters that can be used to increase and stabilize blood pressure to the normal range of 110-120 mmHg? Participants will undergo orthostatic tests (lying on a bed that starts out flat and then moved into an upright seated position by raising the head of bed by 90° and dropping the base of the bed by 90° from the knee) with optimal and sham stimulation, and their blood pressure measurements will be evaluated and compared.
This project will investigate the effect of spinal cord transcutaneous stimulation on blood pressure in individuals with a chronic spinal cord injury who experience blood pressure instability, specifically, orthostatic hypotension (a drop in blood pressure when moving from lying flat on your back to an upright position). The main questions it aims to answer are: 1. What are the various spinal sites and stimulation parameters that normalize and stabilize blood pressure during an orthostatic provocation (70 degrees tilt)? 2. Does training, i.e., exposure to repeated stimulation sessions, have an effect on blood pressure stability? Participants will undergo orthostatic tests (lying on a table that starts out flat, then tilts upward up to 70 degrees), with and without stimulation, and changes in their blood pressure will be evaluated.
The proposed project seeks to maximize the functional recovery achieved during the rehabilitation of the paretic upper limbs in individuals with SCI. The investigation will work towards optimizing the use of transcranial direct current stimulation (tDCS), an adjunct known to improve the effectiveness of rehabilitation. In particular, the relationship between the specificity of current delivery and functional benefit will be explored, and findings may lead to a framework that can be translated to the clinic setting.
The investigators are conducting a research study to try to improve rehabilitation interventions for individuals with spinal cord injury (SCI). In this study, the aim is to determine if temporarily numbing non-paralyzed arm muscles with an over-the-counter numbing cream while exercising paralyzed muscles, can improve the strength, function, and sensation of paralyzed muscles after a spinal cord injury.
Depression is a leading cause of disability worldwide and is more commonly seen in individual's post-spinal cord injury (SCI) than in the general population. Depression post-SCI impacts an individuals' quality of life and recovery. It has been reported that among Veterans with an SCI, those without depression live longer than those with depression. Thus, depression must be treated appropriately. Repetitive transcranial magnetic stimulation (rTMS) is an FDA-approved treatment for depression, but dosing is based on a motor response or movement in the thumb. Over half of individuals with SCI have some degree of arm or hand impairment, so these individuals might not be eligible for rTMS, or they may receive the wrong dose. This study proposes clinical trial in individuals with depression post-SCI to assess the anti-depressant effect of a novel technique to dose rTMS that does not require a motor response in the thumb. By gaining a better understanding of the application of rTMS for depression post-SCI, the investigators aim to advance the rehabilitative care of Veterans.
The purpose of this pilot research project is to examine the impact of a low-glycemic index (GI) diet on postprandial hypotension and glucose control in individuals with chronic spinal cord injury. The objectives are: 1) To evaluate the effect of the low-GI diet on the magnitude of postprandial systolic blood pressure drop compared to a high-GI control diet. 2)To evaluate the effect of a low-GI diet on postprandial glucose and insulin responses compared to a high-GI control diet.
This project will focus on a novel approach to stabilizing blood pressure (BP) during inpatient rehabilitation after acute SCI. After SCI, people have unstable blood pressure, ranging from too low (orthostatic hypotension) to too high (autonomic dysreflexia). Unstable BP often interferes with performing effective physical rehabilitation after SCI. A critical need exists for the identification of safe, practical and effective treatment options that stabilize BP after traumatic SCI. Transcutaneous Spinal Cord Stimulation (TSCS) has several advantages over pharmacological approaches: (1) does not exacerbate polypharmacy, (2) can be activated/deactivated rapidly, and (3) can be applied in synergy with physical exercise. The study team is asking the key question: "What if applying TSCS earlier after injury could prevent the development of BP instability?" To facilitate adoption of TSCS for widespread clinical use, the study team plans to map and develop a parameter configuration that will result in an easy to follow algorithm to maximize individual benefits, while minimizing the burden on healthcare professionals. This project will provide the foundational evidence to support the feasible and safe application of TSCS in the newly injured population, thereby overcoming barriers to engagement in prescribed inpatient rehabilitation regimens that are imposed by BP instability.
This study will examine the use brief prolonged exposure (Brief PE) therapy compared to standard clinical care to reduce posttraumatic distress among people who have had a spinal cord injury and are receiving rehabilitation in an inpatient setting.
This study will determine if the implementation of a home-based telehealth high intensity interval exercise-training (HIIT)program can significantly improve cardiometabolic health and physical function in a cohort of individuals with longstanding spinal cord injury (SCI). Results from this study will determine feasibility, overall enjoyment, and health impact of implementing a home-based telehealth HIIT program in individuals with SCI.
People with SCI are at higher risk of obesity and chronic diseases, such as hypertension, high cholesterol, diabetes and cardiovascular disease, than the general population. Researchers currently lack data on factors that influence weight gain among people with SCI. During this one-year observational study, study staff will enroll 60 individuals with SCI while they are inpatients at Baylor Scott \& White Institute for Rehabilitation (BSWIR). Data will be collected at 3 time periods (before discharge and 6 and 12 months after discharge) in order to better understand factors that affect weight gain over the first 12 months following discharge from inpatient rehabilitation, such as nutritional intake, environmental access, psychosocial factors, energy requirements and risk factors for metabolic syndrome. These data will be used to inform future interventions for people with SCI.
This two-year open-label pilot clinical trial will evaluate the efficacy and safety of romosozumab to treat bone loss in females with chronic spinal cord injury (SCI) and osteoporosis (OP). Participants will receive monthly injections of romosozumab during the first 12 months of the study. During the second year, participants will take oral alendronate tablets on a weekly basis.
This is a single blind, sham controlled crossover trial that will evaluate the effectiveness of acute intermittent hypoxia therapy (AIH) combined with transcutaneous (non-invasive) spinal cord stimulation on gait and balance function for individuals after spinal cord injury.
Individuals who suffer from paralysis after spinal cord injury (SCI) are estimated to have an even greater (66%) prevalence of obesity. Obesity is a major public health concern and is associated with a plethora of cardiometabolic health complications (heart disease, stroke and type II diabetes mellitus). Although the benefits of physical activity to counteract obesity and cardiometabolic disease have been documented, SCI typically limits voluntary exercise to the often injured arms (60-90%). On the other hand, functional electrical stimulation (FES) cycling has proven to be a safe and effective way to exercise paralyzed leg muscles in clinical and home settings, saving the often overworked arms. The investigators have developed a novel high-intensity interval training (HIIT) protocol for FES lower extremities cycling that may provide equal or greater benefits with less time commitment. The investigators proof-of-principle study in 3 obese persons with SCI confirmed that HIIT-FES cycling 3 times per week for 8 weeks without dietary monitoring can increase legs lean mass (5-9%), increase cardiovascular health markers (58% on average) and decrease HbA1c blood levels (2-4%). Also, 2 persons decreased body weight and BMI. The investigators hypothesize that combining HIIT-FES cycling with nutritional counseling will be effective for reducing obesity and enhancing cardiometabolic health in persons with chronic SCI. Research AIM: To determine preliminary efficacy of HIIT-FES cycling combined with nutritional counseling in obese adults with SCI. In this pilot two-arm, parallel, pre-post, subject-matched controlled trial, we will test the hypothesis that the experimental group receiving HIIT-FES cycling plus nutritional counseling will decrease total body weight, decrease body fat percentage, decrease fat mass, increase total and legs lean mass, improve blood lipid levels, decrease blood glucose and HbA1c levels and improve vascular endothelial health (flow mediated dilation) significantly more than age-, sex- and injury-matched controls receiving nutritional counseling only. The investigators will recruit 20 obese adults, 21-65 years of age, with chronic post-traumatic SCI ranging in neurological level between C4 and T12. Participants will be divided into experimental (HIIT-FES cycling plus nutritional counseling) and control (nutritional counseling only) groups.
The study evaluates the effectiveness of Prolonged Exposure Therapy on a population of individuals with spinal cord injuries. Participants will be randomly assigned to either a treatment as usual or Prolonged Exposure therapy group.
The SciExVR study will evaluate the potential benefit of autologous bone marrow derived stem cells (BMSC) in the treatment of spinal cord injury with evidence of impaired motor or sensory function. The treatment consists of bilateral paraspinal injections of the BMSC at the level of the injury as well as superior and inferior to that spinal segment followed by an intravenous injection and intranasal placement. Patients undergoing BMSC treatment may also be assigned to use of exoskeletal movement (or equivalent) or virtual reality visualization (or equivalent) to augment upper motor neuron firing and/or receptivity of the sensory neurons. http://mdstemcells.com/sciexvr/
Individuals with spinal cord injury (SCI) live longer than before and live to an age where metabolic disorders become highly prevalent. Due to loss of mobility and severe skeletal muscle atrophy, obesity, glucose intolerance, and peripheral insulin resistance develop soon after the onset of SCI. These abnormalities are thought to contribute to the increased diabetes disease risk and accelerated aging process in the SCI population. As a result of these trends, overall burden of complications, economic impact and reduced quality of life are increasing. Until there are effective treatments for SCI, it is imperative to develop effective interventions to mitigate metabolic disorders that develop in individuals with SCI. The proposed research project examines the impact of early utilization of a novel neuromuscular electrical stimulation (NMES) program on skeletal muscle metabolism and overall metabolic health in individuals with sub-acute, complete SCI.
This study determines in people with chronic SCI the health and functional impact and user acceptance and satisfaction - of a 6-month comprehensive Lifestyle Intervention; the impact and user acceptance/satisfaction of a Complementary Caregiver Curriculum (CCC) on SCI caregiver health and function and whether the complementary caregiver curriculum (CCC) enhances health and functional benefits obtained by the SCI dyadic partner enrolled in the LI program.
Sleep-disordered breathing (SDB) remains under-treated in individuals living with spinal cord injuries and disorders (SCI/D). The investigators' aim is to test a program that addresses challenges and barriers to positive airway pressure (PAP) treatment of SDB among patients with SCI/D. The investigators anticipate that patients who receive this program will have higher rates of PAP use and will demonstrate improvements in sleep quality, general functioning, respiratory functioning and quality of life from baseline to 6 months follow up compared to individuals who receive a control program. This work addresses critical healthcare needs for patients with SCI/D and may lead to improved health and quality of life for these patients.
This study will evaluate the efficacy of a newly developed serious game, SCI HARD, to enhance self-management skills, self-reported health behaviors, and quality of life among adolescents and young adults with spinal cord injury and disease (SCI/D). SCI HARD was designed by the project PI, Dr. Meade, in collaboration with the UM3D (University of Michigan three dimensional) Lab between 2010 and 2013 with funding from a NIDRR (National Institute on Disability and Rehabilitation Research) Field Initiated Development Grant to assist persons with SCI develop and apply the necessary skills to keep their bodies healthy while managing the many aspects of SCI care. The study makes a unique contribution to rehabilitation by emphasizing the concepts of personal responsibility and control over one's health and life as a whole. By selecting an innovative approach for program implementation, we also attempt to address the high cost of care delivery and lack of health care access to underserved populations with SCI/D living across the United States (US). H1: SCI Hard participants will show greater improvements in problem solving skills, healthy attitudes about disability, and SCI Self-efficacy than will control group members; these improvements will be sustained over time within and between groups. H2: SCI Hard participants will endorse more positive health behaviors than control group members; these improvements will be sustained over time within and between groups. H3: SCI Hard participants will have higher levels of QOL than control group members; these differences will be sustained over time within and between groups. H4: Among SCI Hard participants, dosage of game play will be related to degree of change in self-management skills, health behaviors and QOL.
The overall objective of this study is to define an effective therapeutic approach, using currently available medication, to prevent or mitigate the loss of bone mass and bone strength that occurs after acute spinal cord injury.
The purpose of this study is to determine if a year of alendronate treatment will maintain or increase bone mass density (BMD) compared to baseline BMD values in people with chronic spinal cord injury (SCI). This study will also investigate 1) if alendronate therapy will increase bone strength in people with chronic SCI, 2) the number of participants with adverse events from alendronate, and 3) the effects of alendronate on serum markers of bone metabolism.
Studies have shown that individuals who have suffered a spinal cord injury are at an increased risk of Vitamin D deficiency compared to able-bodied individuals. It has recently been shown that Vitamin D deficiency is linked to a large number of diseases and conditions, including chronic lung disease, vascular problems, and insulin resistance. If this common nutritional deficiency is proven to be the cause of some of these diseases and conditions in persons with SCI, then it may easily be remedied with a cheap and effective therapeutic approach: vitamin D replacement therapy. Because of the high prevalence of vitamin D deficiency in persons with SCI, this therapy alone or in combination with other treatment options will be expected to significantly improve overall well being in the SCI population, decrease hospitalization rate, and the lower the financial burden of care.
The purpose of this study is to determine if a second year of exposure to teriparatide in both subjects that received a year of teriparatide or teriparatide-placebo will result in a greater increase in bone mass density (BMD) compared to that seen in a single year's treatment. This study will also investigate 1) if a second year of teriparatide therapy will increase bone strength in people with chronic spinal cord injury (SCI) who previously received a year of teriparatide or teriparatide-placebo, 2) the number of participants with adverse events from teriparatide, and 3) the effects of teriparatide on serum markers of bone metabolism.
The purpose of this study is to investigate whether combining a noninvasive method of brain stimulation, called Transcranial Direct Current Stimulation (tDCS), enhances the effect of training of the affected upper limbs in patients with incomplete Spinal Cord Injury.