9 Clinical Trials for Various Conditions
The purpose of this study is to leverage two sources of real-world data (RWD) to assess the effectiveness of troriluzole after three years of treatment in patients with SCA by comparison to an external control of untreated patients who were followed in a natural history cohort. Real world evidence of effectiveness will be assessed from the RWD sources to examine the treatment effects of toriluzole in SCA out to 3 years. Progression rates of SCA differ by genotype and long-term follow-up is needed to assess for potential efficacy in this rare disease.
The general purpose of this observational study is to examine biomarkers associated with the pathology of neurodegenerative diseases to potentially develop novel therapeutic approaches.
The purpose of this study is to compare the efficacy of Troriluzole (200 mg once daily) versus placebo after 48 weeks of treatment in subjects with spinocerebellar ataxia (SCA).
This is a randomized, double-blind, placebo-controlled Phase 2 study evaluating oral administration of CAD-1883 in the treatment of adults with a genotypic diagnosis of Spinocerebellar Ataxia (SCA). This study offers the opportunity to understand the safety, tolerability, and efficacy of CAD-1883 in the SCA patient population.
The primary purpose of this study is to compare the efficacy of BHV-4157 (Troriluzole) 140 milligrams (mg) once daily versus placebo after 8 weeks of treatment in subjects with spinocerebellar ataxia (SCA).
The purpose of this research study is to investigate how the brain and motor behavior changes both in individuals with spinocerebellar ataxia and healthy individuals, and to assess whether a therapeutic intervention reduces levels of uncoordinated movement and improves motor function in spinocerebellar ataxia (SCA).
The investigators plan to fill the gap between the current state of clinical trial readiness and the optimal one for SCA1 and SCA3, which are fatal rare diseases with no treatments. Through US-European collaborations, the investigators will establish the world's largest cohorts of subjects at the earliest disease stages, who will benefit most from treatments, validate an ability to detect disease onset and early progression by imaging markers, even prior to ataxia onset, and identify clinical trial designs that will generate the most conclusive results on treatment efficacy with small populations of patients.
Spinocerebellar Ataxia (SCA) refers to a family of genetic diseases that cause progressive problems with gait and balance, as well as other debilitating symptoms. This is a randomized controlled pilot study to test a novel therapeutic intervention that uses noninvasive magnetic brain stimulation to improve functional outcomes in patients with SCA. The study will include quantitative evaluations of gait, balance, and brain physiology to examine possible objective end-points for a future, larger multi-site clinical trial. The investigators anticipate that patients receiving the real intervention will show a functional gain.
This study will examine whether high-dose intravenous immunoglobulin (IVIG) is safe and effective for treating cerebellar ataxia-degeneration of the cerebellum, the part of the brain responsible for coordinating muscle movements and balance. The disease causes a slowly progressive impairment of speech and balance, with patients often developing slurred speech, tremor, clumsiness of the hands, and walking difficulties (ataxia). IVIG is derived from donated blood that has been purified, cleaned and processed into a form that can be infused. IVIG is an immune suppressant that is routinely used to treat other neurological conditions. Patients 18 years of age and older with hereditary (genetic) or sporadic (unknown cause) cerebellar degeneration may be eligible for this 5-month study. They must have evidence of an immune component to their condition, such as gluten sensitivity or antiganglioside antibodies. Candidates will be screened with a neurological examination, a review of medical records and possibly blood tests. Participants will be randomly assigned to receive infusions of either IVIG or placebo (an inactive substance) through an arm vein once a month for two months. The infusions will be given in the hospital in doses divided over 2 days, each lasting 6 to 10 hours. Before the infusions, patients will undergo ataxia assessments through tests of coordination and balance that may involve finger tapping, walking in a straight line, talking, and eye movements. When the treatment is finished, patients will be followed in the clinic once a month for 3 months for blood tests repeat ataxia assessments to evaluate the effects of treatment.