108 Clinical Trials for Various Conditions
This phase I/II trial studies the side effects of pembrolizumab and vorinostat in treating patients with squamous cell head and neck cancer or salivary gland cancer that has come back, has spread to other places in the body and/or cannot be removed by surgery. Monoclonal antibodies, such as pembrolizumab, may interfere with the ability of tumor cells to grow and spread. Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving pembrolizumab together with vorinostat may be a better treatment for head and neck cancer or salivary gland cancer.
This phase II trial studies how well giving temsirolimus together with cetuximab works compared to temsirolimus alone in treating patients with recurrent and/or metastatic head and neck cancer who did not respond to previous therapy. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. It is not yet known whether giving temsirolimus together with cetuximab is more effective than giving temsirolimus alone.
This phase I trial studies the side effects and the best dose of lenalidomide when given together with cetuximab in treating patients with colorectal cancer or head and neck cancer that has spread to other places in the body and usually cannot be cured or controlled with treatment. Biological therapies, such as lenalidomide, use substances made from living organisms that may stimulate the immune system in different ways and stop tumor cells from growing. Monoclonal antibodies, such as cetuximab, may block tumor growth in different ways by targeting certain cells. Giving lenalidomide together with cetuximab may be a better treatment for colorectal cancer or head and neck cancer.
This phase II trial is studying how well cediranib maleate works in treating patients with recurrent or newly diagnosed metastatic head and neck cancer. Cediranib maleate may stop the growth of head and neck cancer by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.
This phase II trial studies the effects of interstitial photodynamic therapy in patients with head and neck cancer that has come back. Interstitial photodynamic therapy uses a combination of laser light and a light-sensitive drug called porfimer sodium to destroy tumors. During treatment a laser light is used to activate the drug. Interstitial photodynamic therapy may be an effective treatment for head and neck cancer.
This phase I/II trial studies the side effects and the best dose of sorafenib tosylate and docetaxel when given together with cisplatin and to see how well they work in treating patients with recurrent or metastatic squamous cell carcinoma of the head and neck. Drugs used in chemotherapy, such as cisplatin and docetaxel, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Sorafenib tosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Sorafenib tosylate may also help cisplatin and docetaxel work better by making tumor cells more sensitive to the drugs. Giving sorafenib tosylate, cisplatin, and docetaxel may be an effective treatment for squamous cell carcinoma of the head and neck.
This phase I trial studies the side effects and best dose of TLR8 Agonist VTX-2337 when given together with cetuximab in treating patients with locally advanced, recurrent, or metastatic squamous cell cancer of the head and neck (SCCHN). Biological therapies, such as TLR8 Agonist VTX-2337 may stimulate the immune system in different ways and stop tumor cells from growing. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Giving TLR8 Agonist VTX-2337 together with cetuximab may kill more tumor cells.
This phase II trial is studying how well giving carboplatin, paclitaxel, cetuximab, and erlotinib hydrochloride together works in treating patients with metastatic or recurrent squamous cell head and neck cancer. Drugs used in chemotherapy, such as carboplatin and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Erlotinib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving combination chemotherapy together with cetuximab and erlotinib hydrochloride may kill more tumor cells.
RATIONALE: Drugs used in chemotherapy, such as capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Lapatinib ditosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving capecitabine together with lapatinib ditosylate may kill more tumor cells. PURPOSE: This phase II trial is studying how well giving capecitabine and lapatinib ditosylate together works in treating patients with squamous cell cancer of the head and neck.
This phase I trial is studying the side effects and best dose of sunitinib when given together with cetuximab and radiation therapy in treating patients with locally advanced or recurrent squamous cell carcinoma of the head and neck. Sunitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving sunitinib together with cetuximab and radiation therapy may kill more tumor cells.
RATIONALE: Studying samples of blood in the laboratory may help doctors learn more about cancer. It may also help doctors predict how well patients will respond to treatment. PURPOSE: This research study is looking at proteins in blood samples to predict treatment benefit in patients with recurrent and/or metastatic squamous cell head and neck cancer.
RATIONALE: Erlotinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as docetaxel, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving erlotinib together with docetaxel and radiation therapy may kill more tumor cells. PURPOSE: This phase II trial is studying how well erlotinib given together with docetaxel and radiation therapy works in treating patients with stage III or stage IV squamous cell carcinoma of the head and neck.
Randomized phase II trial to study the effectiveness of ixabepilone in treating patients who have metastatic or recurrent head and neck cancer. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die
The purpose of this study is to test the good and bad effects of an experimental drug called SF1126. This drug is being tested in patients whose cancer has not been controlled by available standard therapies and who have certain genes in their tumor. SF1126 is a drug that inhibits a cell protein called phosphatidyl inositol 3 kinase (PI3K). PI3K is part of signaling pathway that tells cancer cells to grow, survive, invade and metastasize. PI3K also has an important role in the development of blood vessels that are required to support tumor growth. SF1126 is being developed by SignalRx Pharmaceuticals, Inc. It is considered an experimental drug because it is not approved by the FDA for any disease treatment.
This pilot research trial studies circulating tumor deoxyribonucleic acid (DNA) in predicting outcomes in patients with stage IV head and neck cancer or stage III-IV non-small cell lung cancer. Studying circulating tumor DNA from patients with head and neck or lung cancer in the laboratory may help doctors predict how well patients will respond to treatment.
This pilot randomized phase I/II trial studies the side effects and best dose of PI3K inhibitor BKM120 when given together with cetuximab and to see how well it works in treating patients with recurrent or metastatic head and neck cancer. PI3K inhibitor BKM120 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumors to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Giving PI3K inhibitor BKM120 together with cetuximab may kill more tumor cells
This phase I trial studies how well talactoferrin works in treating patients with relapsed or refractory non-small cell lung cancer (NSCLC) or squamous cell head and neck cancer. Biological therapies, such as talactoferrin, may stimulate the immune system in different ways and stop tumor cells from growing
This randomized phase I/II trial studies the side effects and best way to give lyophilized black raspberries in preventing oral cancer in high-risk patients previously diagnosed with stage I-IV or in situ head and neck cancer. Chemoprevention is the use of certain drugs to keep cancer from forming. The use of lyophilized black raspberries may prevent oral cancer. Studying samples of oral cavity scrapings, blood, urine, and saliva in the laboratory from patients receiving lyophilized black raspberries may help doctors learn more about changes that occur in DNA and the effect of lyophilized back raspberries on biomarkers.
This phase I trial studies the side effects and best dose of giving everolimus (RAD001) and erlotinib hydrochloride together with radiation therapy in treating patients with recurrent head and neck cancer previously treated with radiation therapy. RAD001 and erlotinib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy x rays to kill tumor cells. Giving RAD001 and erlotinib hydrochloride together with radiation therapy may kill more tumor cells.
Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Sorafenib tosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. It is not yet known whether cetuximab is more effective when given alone or together with sorafenib tosylate in treating patients with head and neck cancer. This randomized phase II trial is studying cetuximab to see how well it works when given together with or without sorafenib tosylate in treating patients with refractory, recurrent, and/or metastatic head and neck cancer.
This phase II trial is studying the how well saracatinib works in treating patients with metastatic or recurrent head and neck cancer. Saracatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth
This phase II trial studies how well dasatinib works in treating patients with head and neck cancer that has come back or spread to other areas of the body. Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase II trial is studying how well sunitinib works in treating patients with recurrent and/or metastatic head and neck cancer. Sunitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.
This randomized phase I/II trial studies the side effects, best way to give, and best dose of erlotinib and bevacizumab when given with cetuximab and how well giving erlotinib and cetuximab together with or without bevacizumab works in treating patients with metastatic or unresectable kidney, colorectal, head and neck, pancreatic, or non-small cell lung cancer. Erlotinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as cetuximab and bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Cetuximab and bevacizumab may also stop the growth of tumor cells by blocking blood flow to the tumor. Giving erlotinib together with cetuximab and/or bevacizumab may kill more tumor cells.
Lapatinib may stop the growth of tumor cells by blocking some of the enzymes needed for their growth. This phase II trial is studying how well lapatinib works in treating patients with recurrent and/or metastatic head and neck cancer.
Sorafenib may stop the growth of tumor cells by blocking the enzymes necessary for their growth. It may also stop the growth of tumor cells by stopping blood flow to the tumor. This phase II trial is studying how well sorafenib works in treating patients with recurrent or metastatic head and neck cance
Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Erlotinib may stop the growth of tumor cells by blocking the enzymes necessary for tumor cell growth. Radiation therapy uses high-energy x-rays to damage tumor cells. Combining erlotinib with docetaxel may make the tumor cells more sensitive to radiation therapy and may kill more tumor cells. Phase I trial to study the maximum tolerated dose (MTD) of combining erlotinib with docetaxel and radiation therapy in treating patients who have locally advanced head and neck cancer
Monoclonal antibodies, such as bevacizumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or deliver cancer-killing substances to them. Drugs used in chemotherapy work in different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Combining monoclonal antibody therapy with chemotherapy and radiation therapy may be an effective treatment for head and neck cancer. This phase I trial is to see if combining bevacizumab, fluorouracil, and hydroxyurea with radiation therapy works in treating patients who have advanced head and neck cancer
The purpose of the study is to conduct research of a new PET radiopharmaceutical in cancer patients. The uptake of the novel radiopharmaceutical 18F-FPPRGD2 will be assessed in study participants with glioblastoma multiforme (GBM), gynecological cancers, and renal cell carcinoma (RCC) who are receiving antiangiogenesis treatment.
This phase I trial studies the side effects and best dose of cetuximab when given together with everolimus in treating patients with metastatic or recurrent colon cancer or head and neck cancer. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of the tumor to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Everolimus may stop the growth of tumor cells by blocking blood flow to the tumor. Giving cetuximab together with everolimus may be an effective treatment for colon cancer or head and neck cancer