Treatment Trials

143 Clinical Trials for Various Conditions

Focus your search

TERMINATED
Lapatinib (GW572016) for Metastatic or Recurrent Squamous Cell Carcinoma Esophagus
Description

The purpose of this study is the determine whether a new compound, called lapatinib, can be effective in shrinking cancerous tumors of the esophagus that have recurred or spread somewhere else in the body. They also want to determine the toxicity of this regimen. Lapatinib blocks 2 receptors that sometimes are present on cancer cells (called epidermal growth factor receptor, and the Erb B2 receptor). It is possible that blocking these receptors may decrease the growth of the cancer cells.

COMPLETED
Pembrolizumab in Refractory Advanced Esophageal Cancer
Description

This research study is studying a targeted therapy as a possible treatment for advanced esophageal cancer. The study intervention involved in this study is: -Pembrolizumab

RECRUITING
Evaluating the Effect of Itraconazole on Pathologic Complete Response Rates in Esophageal Cancer
Description

Esophageal cancer, which has a low 5-year overall survival rate for all stages (\<20%) , is increasing in incidence. Previous studies have shown that the Hedgehog (Hh) and AKT signaling pathways are activated in a significant proportion of esophageal cancers. Itraconazole, a widely used anti-fungal medication, has been shown to inhibit various pathways involved in esophageal cancer tumorigenesis including Hh and AKT. In this phase II clinical trial, the investigators aim to evaluate the effect of itraconazole as a neoadjuvant therapy following standard of care chemoradiation in the treatment of locoregional esophageal and gastroesophageal junction carcinomas.

RECRUITING
Comparing Proton Therapy to Photon Radiation Therapy for Esophageal Cancer
Description

This trial studies how well proton beam radiation therapy compared with intensity modulated photon radiotherapy works in treating patients with stage I-IVA esophageal cancer. Proton beam radiation therapy uses a beam of protons (rather than x-rays) to send radiation inside the body to the tumor without damaging much of the healthy tissue around it. Intensity modulated photon radiotherapy uses high-energy x-rays to deliver radiation directly to the tumor without damaging much of the healthy tissue around it. It is not yet known whether proton beam therapy or intensity modulated photon radiotherapy will work better in treating patients with esophageal cancer.

Conditions
Clinical Stage I Esophageal Adenocarcinoma AJCC v8Clinical Stage I Esophageal Squamous Cell Carcinoma AJCC v8Clinical Stage I Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage II Esophageal Adenocarcinoma AJCC v8Clinical Stage II Esophageal Squamous Cell Carcinoma AJCC v8Clinical Stage II Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage IIA Esophageal Adenocarcinoma AJCC v8Clinical Stage IIA Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage IIB Esophageal Adenocarcinoma AJCC v8Clinical Stage IIB Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage III Esophageal Adenocarcinoma AJCC v8Clinical Stage III Esophageal Squamous Cell Carcinoma AJCC v8Clinical Stage III Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage IVA Esophageal Adenocarcinoma AJCC v8Clinical Stage IVA Esophageal Squamous Cell Carcinoma AJCC v8Clinical Stage IVA Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage I Esophageal Adenocarcinoma AJCC v8Pathologic Stage I Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage I Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IA Esophageal Adenocarcinoma AJCC v8Pathologic Stage IA Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage IA Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IB Esophageal Adenocarcinoma AJCC v8Pathologic Stage IB Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage IB Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IC Esophageal Adenocarcinoma AJCC v8Pathologic Stage IC Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage II Esophageal Adenocarcinoma AJCC v8Pathologic Stage II Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage II Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IIA Esophageal Adenocarcinoma AJCC v8Pathologic Stage IIA Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage IIA Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IIB Esophageal Adenocarcinoma AJCC v8Pathologic Stage IIB Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage IIB Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage III Esophageal Adenocarcinoma AJCC v8Pathologic Stage III Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage III Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IIIA Esophageal Adenocarcinoma AJCC v8Pathologic Stage IIIA Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage IIIA Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IIIB Esophageal Adenocarcinoma AJCC v8Pathologic Stage IIIB Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage IIIB Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IVA Esophageal Adenocarcinoma AJCC v8Pathologic Stage IVA Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage IVA Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage I Esophageal Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage I Esophageal Squamous Cell Carcinoma AJCC v8Postneoadjuvant Therapy Stage I Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage II Esophageal Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage II Esophageal Squamous Cell Carcinoma AJCC v8Postneoadjuvant Therapy Stage II Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage III Esophageal Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage III Esophageal Squamous Cell Carcinoma AJCC v8Postneoadjuvant Therapy Stage III Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IIIA Esophageal Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IIIA Esophageal Squamous Cell Carcinoma AJCC v8Postneoadjuvant Therapy Stage IIIA Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IIIB Esophageal Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IIIB Esophageal Squamous Cell Carcinoma AJCC v8Postneoadjuvant Therapy Stage IIIB Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IVA Esophageal Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IVA Esophageal Squamous Cell Carcinoma AJCC v8Postneoadjuvant Therapy Stage IVA Gastroesophageal Junction Adenocarcinoma AJCC v8Thoracic Esophagus Squamous Cell Carcinoma
COMPLETED
Swallowable Sponge Cell Sampling Device and Next Generation Sequencing in Detecting Esophageal Cancer in Patients With Low or High Grade Dysplasia, Barrett Esophagus, or Gastroesophageal Reflux Disease
Description

This pilot clinical trial studies how well a swallowable sponge cell sampling device and next generation sequencing work in detecting esophageal cancer in patients with low or high grade dysplasia, Barrett esophagus, or gastroesophageal reflux disease. Checking biomarkers in abnormal esophageal cells using a swallowable sponge cell sampling device and next generation sequencing may improve diagnosis and treatment of esophageal cancer.

COMPLETED
Esophageal Cytology With FISH in Detecting Esophageal Cancer
Description

This clinical trial studies whether esophageal cytology plus fluorescence in situ hybridization (FISH) is equal to or better than esophago-gastro-duodenoscopy (EGD) or upper endoscopy for the early detection of esophageal cancer. Genes are the units of deoxyribonucleic acid (DNA) the chemical structure carrying genetic information that determine many human characteristics. Certain genes in cancer cells may determine how the tumor grows or spreads and how it may respond to different drugs. Part of this study is to test those genes in esophageal cells using FISH.

TERMINATED
Proton Beam Therapy to Treat Esophageal Cancer
Description

Assess progression-free survival and overall survival of proton beam therapy (PBT) for patients with resectable vs. unresectable esophageal cancer, and to assess patient-reported outcomes of PBT for esophageal cancer at 6 months following chemoradiation and physician-reported toxicity of PBT for esophageal cancer.

COMPLETED
Pilot Trial of CRLX101 in Treatment of Patients With Advanced or Metastatic Stomach, Gastroesophageal, or Esophageal Cancer That Cannot be Removed by Surgery
Description

This pilot clinical trial studies cyclodextrin-based nanopharmaceutical CRLX101 in treating patients with advanced or metastatic stomach, gastroesophageal, or esophageal cancer that has progressed through at least one prior regimen of chemotherapy and cannot be removed by surgery. CRLX101 delivers the cytotoxic topoisomerase-1 inhibitor camptothecin into tumor cells and is hypothesized to interrupt the growth of tumor cells.

COMPLETED
Trimodality Management of T1b Esophageal Cancers
Description

The goal of this clinical research study is to learn if giving chemotherapy and radiation therapy before surgery for early-stage esophageal cancer can help to control the disease and if so, for how long. The safety of this treatment will also be studied.

COMPLETED
Paclitaxel, Cisplatin, and Radiation Therapy With or Without Cetuximab in Treating Patients With Locally Advanced Esophageal Cancer
Description

RATIONALE: Drugs used in chemotherapy, such as paclitaxel and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill tumor cells. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Cetuximab may stop the growth of esophageal cancer by blocking blood flow to the tumor. It is not yet known whether giving paclitaxel and cisplatin together with radiation therapy is more effective with or without cetuximab in treating esophageal cancer. PURPOSE: This randomized phase III trial is comparing how well giving paclitaxel and cisplatin together with radiation therapy works with or without cetuximab in treating patients with locally advanced esophageal cancer.

COMPLETED
Irinotecan, Radiation Therapy, and Docetaxel With or Without Cisplatin in Treating Patients With Locally Advanced Esophageal Cancer
Description

RATIONALE: Drugs used in chemotherapy, such as docetaxel and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Irinotecan may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high-energy x-rays to kill tumor cells. Irinotecan and docetaxel may also make tumor cells more sensitive to radiation therapy. Giving combination chemotherapy together with radiation therapy may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of docetaxel when given together with irinotecan and radiation therapy with or without cisplatin in treating patients with locally advanced esophageal cancer.

TERMINATED
Efficacy and Safety of OncoGel™ Added to Chemotherapy and Radiation Before Surgery in Subjects With Esophageal Cancer
Description

OncoGel is a new experimental drug delivery system that allows the slow continuous release of paclitaxel (an approved intravenous anticancer drug), from a gel (ReGel) over a long period of time. The gel will disappear in 4 to 6 weeks as it releases the paclitaxel. The protocol is directed towards evaluating the efficacy and safety of paclitaxel delivered as a local, intralesional treatment when used in combination with chemotherapy (cisplatin and 5-FU) and radiation therapy before surgery.

COMPLETED
Erlotinib and Radiation Therapy in Treating Older Patients With Stage I, Stage II, Stage III, or Stage IV Esophageal Cancer
Description

RATIONALE: Erlotinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving erlotinib together with radiation therapy may kill more tumor cells. PURPOSE: This phase II trial is studying how well giving erlotinib together with radiation therapy works in treating older patients with stage I, stage II, stage III, or stage IV esophageal cancer.

COMPLETED
Oxaliplatin, Capecitabine, and Radiation Therapy in Patients Undergoing Surgery for Stage II, III, IV Esophageal Cancer
Description

RATIONALE: Drugs used in chemotherapy, such as oxaliplatin and capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving chemotherapy together with radiation therapy before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed. PURPOSE: This phase II trial is studying how well giving oxaliplatin and capecitabine together with radiation therapy works in treating patients undergoing surgery for stage II, stage III, or stage IV esophageal cancer.

COMPLETED
Cetuximab, Cisplatin, and Irinotecan in Treating Patients With Metastatic Esophageal Cancer, Gastroesophageal Junction Cancer, or Gastric Cancer That Did Not Respond to Previous Irinotecan and Cisplatin
Description

RATIONALE: Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Cetuximab may also stop the growth of tumor cells by blocking some of the enzymes needed for their growth. Drugs used in chemotherapy, such as cisplatin and irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving cetuximab together with cisplatin and irinotecan may kill more tumor cells. PURPOSE: This phase II trial is studying how well giving cetuximab together with cisplatin and irinotecan works in treating patients with metastatic esophageal cancer, gastroesophageal junction cancer, or gastric cancer that did not respond to previous irinotecan and cisplatin.

COMPLETED
Combination Chemotherapy and Cetuximab in Treating Patients With Metastatic Esophageal Cancer or Gastroesophageal Junction Cancer
Description

RATIONALE: Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Giving more than one chemotherapy drug (combination chemotherapy) together with cetuximab may kill more tumor cells. PURPOSE: This randomized phase II trial is studying three different combination chemotherapy regimens to compare how well they work when given together with cetuximab in treating patients with metastatic esophageal cancer or gastroesophageal junction cancer.

WITHDRAWN
Plastic Stents Compared With Metal Stents in Treating Patients With Malignant Dysphagia Caused by Esophageal Cancer or Gastroesophageal Junction Cancer
Description

RATIONALE: Placing a stent in the esophagus may lessen swallowing difficulties and improve quality of life in patients with malignant dysphagia caused by esophageal cancer or gastroesophageal junction cancer. PURPOSE: This randomized clinical trial is studying self-expanding plastic stents to see how well they work compared with self-expanding metal stents in treating patients with malignant dysphagia caused by esophageal cancer or gastroesophageal junction cancer.

TERMINATED
Gefitinib, Cisplatin, Irinotecan, and Radiation Therapy Before Surgery in Treating Patients With Esophageal Cancer or Gastroesophageal Junction Cancer That Can Be Removed By Surgery
Description

RATIONALE: Gefitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cisplatin and irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving gefitinib together with chemotherapy and radiation therapy before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed. PURPOSE: This phase I/II trial is studying the side effects of gefitinib when given together with cisplatin, irinotecan, and radiation therapy before surgery and to see how well they work in treating patients with esophageal cancer or gastroesophageal junction cancer that can be removed by surgery.

TERMINATED
Radiation Therapy, Pemetrexed Disodium, and Carboplatin in Treating Patients With Locally Advanced Esophageal Cancer That Can Be Removed By Surgery
Description

RATIONALE: Radiation therapy uses high-energy x-rays to kill tumor cells. Drugs used in chemotherapy, such as pemetrexed disodium and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Pemetrexed disodium may also stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving radiation therapy together with pemetrexed disodium and carboplatin before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed. PURPOSE: This phase II trial is studying how well giving radiation therapy together with pemetrexed disodium and carboplatin works in treating patients with locally advanced esophageal cancer that can be removed by surgery.

TERMINATED
Gefitinib in Treating Patients With Stage I, Stage II, or Stage III Esophageal Cancer That Can Be Removed By Surgery
Description

RATIONALE: Gefitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving gefitinib before surgery may shrink the tumor so that it can be removed. PURPOSE: This phase II trial is studying how well gefitinib works in treating patients with stage I, stage II, or stage III esophageal cancer that can be removed by surgery.

COMPLETED
Combination Chemotherapy, Radiation Therapy and Surgery for Esophageal Cancer
Description

The purpose of this study is to find out what effects (good and bad) the combination of three chemotherapy drugs (cetuximab, cisplatin, and irinotecan) have on esophageal cancer when given with radiation therapy.

TERMINATED
S0414 Cetuximab, Combo Chemo, and RT in Locally Advanced Esophageal Cancer
Description

RATIONALE: Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Cetuximab may also stop the growth of esophageal cancer by blocking blood flow to the tumor and by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cisplatin and irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving cetuximab together with combination chemotherapy and radiation therapy may kill more tumor cells. PURPOSE: This phase II trial is studying how well giving cetuximab together with combination chemotherapy and radiation therapy works in treating patients with locally advanced esophageal cancer that cannot be removed by surgery.

TERMINATED
Oxaliplatin, Gefitinib, and Radiation Therapy in Treating Patients With Locally Advanced or Metastatic Esophageal Cancer
Description

RATIONALE: Drugs used in chemotherapy, such as oxaliplatin, work in different ways to stop tumor cells from dividing so they stop growing or die. Gefitinib may stop the growth of tumor cells by blocking the enzymes necessary for their growth. Radiation therapy uses high-energy x-rays to damage tumor cells. Combining oxaliplatin and gefitinib with radiation therapy may kill more tumor cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of oxaliplatin when given together with gefitinib and radiation therapy and to see how well they work in treating patients with locally advanced or metastatic esophageal cancer.

COMPLETED
Erlotinib Hydrochloride in Treating Patients With Advanced Esophageal Cancer or Stomach Cancer
Description

This phase II trial is studying erlotinib hydrochloride to see how well it works in treating patients with advanced esophageal cancer or stomach cancer. Erlotinib hydrochloride may stop the growth of cancer by blocking the enzymes necessary for tumor cell growth.

COMPLETED
Combination Chemotherapy Plus Radiation Therapy in Treating Patients With Esophageal Cancer
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. PURPOSE: Phase II trial to study the effectiveness of combination chemotherapy with or without radiation therapy in treating patients who have esophageal cancer.

TERMINATED
Combination Chemotherapy Plus Radiation Therapy Followed By Surgery in Treating Patients With Stage I, Stage II, or Stage III Esophageal Cancer
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Giving chemotherapy drugs and radiation therapy before surgery may shrink the tumor so that it can be removed during surgery. PURPOSE: Phase II trial to study the effectiveness of combination chemotherapy plus radiation therapy given before surgery in treating patients who have stage I, stage II, or stage III esophageal cancer.

COMPLETED
Flavopiridol and Paclitaxel in Treating Patients With Locally Advanced or Metastatic Esophageal Cancer That Has Not Responded to Previous Paclitaxel
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more cancer cells. PURPOSE: Phase II trial to study the effectiveness of combining flavopiridol and paclitaxel in treating patients who have locally advanced or metastatic esophageal cancer that has not responded to previous paclitaxel therapy.

COMPLETED
Combination Chemotherapy Plus Radiation Therapy in Treating Patients With Esophageal Cancer
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Combining chemotherapy with radiation therapy may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of chemotherapy plus radiation therapy in treating patients who have advanced cancer of the esophagus.

COMPLETED
Bryostatin 1 Plus Paclitaxel in Treating Patients With Locally Advanced or Metastatic Esophageal Cancer or Stomach Cancer
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of bryostatin 1 and paclitaxel in treating patients who have locally advanced or metastatic esophageal cancer or stomach cancer.

TERMINATED
Combination Chemotherapy and Interferon Alfa Followed by Surgery and/or Radiation Therapy in Treating Patients With Stage I, Stage II, or Stage III Esophageal Cancer
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Interferon alfa may interfere with the growth of cancer cells. Radiation therapy uses high-energy x-rays to damage tumor cells. Combining more than one drug and combining chemotherapy with interferon alfa, surgery, and/or radiation therapy may kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of combination chemotherapy and interferon alfa followed by surgery and/or radiation therapy in treating patients who have stage I, stage II, or stage III esophageal cancer.