55 Clinical Trials for Various Conditions
RATIONALE: A specially modified virus called ONYX-015 may be able to kill tumor cells while leaving normal cells undamaged. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining ONYX-015 with chemotherapy may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of ONYX-015 combined with cisplatin and fluorouracil in treating patients who have advanced head and neck cancer.
This pilot clinical trial studies transoral robotic surgery (TORS) in treating patients with benign or malignant tumors of the head and neck. TORS is a less invasive type of surgery for head and neck cancer and may have fewer side effects and improve recovery
This randomized phase I/II trial studies the side effects and best way to give lyophilized black raspberries in preventing oral cancer in high-risk patients previously diagnosed with stage I-IV or in situ head and neck cancer. Chemoprevention is the use of certain drugs to keep cancer from forming. The use of lyophilized black raspberries may prevent oral cancer. Studying samples of oral cavity scrapings, blood, urine, and saliva in the laboratory from patients receiving lyophilized black raspberries may help doctors learn more about changes that occur in DNA and the effect of lyophilized back raspberries on biomarkers.
RATIONALE: Swallowing exercise therapy may improve the quality of life of head and neck cancer patients undergoing chemotherapy or radiation therapy. PURPOSE: This randomized phase III trial is studying early onset of swallowing exercise therapy to see how well it works compared to late onset of swallowing exercise therapy in treating patients with head and neck cancer undergoing chemotherapy or radiation therapy.
RATIONALE: Drugs used in chemotherapy, such as docetaxel, work in different ways to stop the growth of tumor cells, either by killing the cells of by stopping them from dividing. Pemetrexed disodium may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I trial is studying the side effects and best dose of giving pemetrexed disodium and docetaxel together in treating patients with advanced solid tumors.
RATIONALE: Photodynamic therapy uses a drug that becomes active when it is exposed to a certain kind of light. When the drug is active, tumor cells are killed. PURPOSE: This randomized phase I trial is studying the side effects and best dose of photodynamic therapy in treating patients with premalignant or early stage head and neck tumors.
RATIONALE: Iseganan hydrochloride may be effective in preventing or lessening oral mucositis in patients who are receiving radiation therapy for head and neck cancer. It is not yet known if iseganan hydrochloride is effective in preventing oral mucositis. PURPOSE: Randomized phase III trial to determine the effectiveness of iseganan hydrochloride in preventing oral mucositis in patients who are receiving radiation therapy for head and neck cancer.
RATIONALE: Fluorescent bronchoscopy, when used in combination with conventional white light bronchoscopy, may improve the ability to detect early lung cancer. PURPOSE: A pilot study to evaluate fluorescent light bronchoscopy plus conventional bronchoscopy as a tool for screening and detecting lung cancer in persons with completely resected head and neck cancer or successfully treated early-stage lung cancer.
RATIONALE: Sargramostim may lessen symptoms of mucositis in patients receiving radiation therapy for head and neck cancer. It is not yet known if sargramostim is more effective than no treatment in reducing mucositis caused by radiation therapy. PURPOSE: Randomized phase III trial to determine the effectiveness of sargramostim in decreasing mucositis in patients who are receiving radiation therapy for head and neck cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Combining more than one chemotherapy drug with radiation therapy may kill more tumor cells. PURPOSE: Phase I/II trial to study the effectiveness of combination chemotherapy plus radiation therapy in treating patients who have advanced mouth cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Combining chemotherapy with radiation therapy may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of combination chemotherapy plus radiation therapy in treating patients who have advanced and/or recurrent head and neck cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Drugs such as amifostine may prevent the side effects of radiation therapy. Combining more than one drug and combining radiation therapy and surgery with chemotherapy may kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of combining surgery, radiation therapy, and combination chemotherapy in treating patients who have recurrent head and neck cancer that has been treated previously with radiation therapy.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase II trial to study the effectiveness of paclitaxel in treating patients with recurrent or refractory head and neck cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses x-rays to damage tumor cells. Drugs, such as amifostine, may protect normal cells from the side effects of chemotherapy and radiation therapy. PURPOSE: Phase I/II trial to study the effectiveness of amifostine plus cisplatin, paclitaxel, and radiation therapy in treating patients who have advanced unresectable head and neck cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. PURPOSE: Phase I/II trial to study the effectiveness of cisplatin and gemcitabine in treating patients with advanced squamous cell cancer of the head and neck that cannot be surgically removed.
RATIONALE: Drugs that make cancer cells more visible to light may help in the diagnosis of head and neck cancer. PURPOSE: Phase II trial to study the usefulness of porfimer sodium in diagnosing patients with head and neck cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Combining radiation therapy with chemotherapy may kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of chemotherapy plus radiation therapy in treating patients with head and neck cancer.
The purpose of the study is to conduct research of a new PET radiopharmaceutical in cancer patients. The uptake of the novel radiopharmaceutical 18F-FPPRGD2 will be assessed in study participants with glioblastoma multiforme (GBM), gynecological cancers, and renal cell carcinoma (RCC) who are receiving antiangiogenesis treatment.
RATIONALE: SU5416 may stop the growth of head and neck cancer by stopping blood flow to the tumor. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining SU5416 with chemotherapy may kill more cancer cells. PURPOSE: Phase I trial to study the effectiveness of SU5416 and paclitaxel in treating patients who have recurrent, locally advanced, or metastatic cancer of the head and neck.
Current therapies for advanced Head and Neck Cancer provide very limited benefit to the patient. The anti-cancer properties of Antineoplaston therapy suggest that it may prove beneficial in the treatment of advanced Head and Neck Cancer. PURPOSE: This study is being performed to determine the effects (good and bad) that Antineoplaston therapy has on patients with advanced Head and Neck Cancer.
This early phase I trial compares sodium fluoride F-18 (F-18 NaF) positron emission tomography (PET)/computed tomography (CT) to the standard of care imaging scan (and fludeoxyglucose F-18 \[F-18 FDG\] PET/CT) for assessing the effects radiation therapy has on the blood vessels in the neck in patients with head and neck cancers. For people with cancers in the head and neck, doctors often use radiation to target both the tumor and nearby glands. Radiation therapy to this region can affect the blood vessels in the neck that supply blood to the brain. F-18 NaF and F-18 FDG are contrast agents that can be used together with PET/CT imaging to visualize areas inside the body. A PET scan is a procedure in which a small amount of radioactive glucose (sugar) is injected into a vein, and a scanner is used to make detailed, computerized pictures of areas inside the body where the glucose is taken up. A CT scan is a procedure that uses a computer linked to an x-ray machine to make a series of detailed pictures of areas inside the body. The pictures are taken from different angles and are used to create 3-dimensional views of tissues and organs. Combining a PET scan with a CT scan can help make the image easier to interpret. PET/CT scans are hybrid scanners that combine both modalities into a single scan during the same examination. Imaging with F-18 NaF PET/CT may be as effective or more effective than the standard F-18 FDG PET/CT for assessing the effects radiation therapy has on blood vessels in the neck in patients with head and neck cancers.
This phase Ib trial tests the safety, side effects and best dose of tumor membrane vesicle (TMV) vaccine therapy alone and in combination with pembrolizumab and evaluates how well it works in treating patients with head and neck squamous cell cancer that has come back after a period of improvement (recurrent) or that has spread from where it first started (primary site) to other places in the body (metastatic). Vaccines made from a person's tumor cells, such as TMV vaccines, may help the body build an effective immune response to kill tumor cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving TMV vaccine therapy alone or with pembrolizumab may be safe, tolerable and/or effective in treating patients with recurrent and/or metastatic head and neck squamous cell cancer.
This phase II trial tests how well lovastatin and pembrolizumab work in treating patients with head and neck cancer that has come back after a period of improvement (recurrent) or that has spread from where it first started (primary site) to other places in the body (metastatic). Lovastatin is a drug used to lower the amount of cholesterol in the blood and may also cause tumor cell death. In addition, studies have shown that lovastatin may make the tumor cells more sensitive to immunotherapy. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving lovastatin and pembrolizumab may kill more tumor cells in patients with recurrent or metastatic head and neck cancer.
This phase III trial compares the effect of adding cetuximab to pembrolizumab versus pembrolizumab alone in treating patients with head and neck squamous cell carcinoma (HNSCC) that has come back after a period of improvement (recurrent) and/or that has spread from where it first started (primary site) to other places in the body (metastatic). Cetuximab is in a class of medications called monoclonal antibodies. It binds to a protein called EGFR, which is found on some types of tumor cells. This may help keep tumor cells from growing. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the tumor, and may interfere with the ability of tumor cells to grow and spread. Giving cetuximab and pembrolizumab together may be more effective at treating patients with recurrent and/or metastatic HNSCC than pembrolizumab alone.
This phase II trial compares the effect of adding ipatasertib to pembrolizumab (standard immunotherapy) vs. pembrolizumab alone in treating patients with squamous cell cancer of the head and neck that has come back (recurrent) or that has spread from where it first started (primary site) to other places in the body (metastatic). Ipatasertib is in a class of medications called protein kinase B (AKT) inhibitors. It may stop the growth of tumor cells and may kill them. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving ipatasertib in combination with pembrolizumab may be more effective than pembrolizumab alone in improving some outcomes in patients with recurrent/metastatic squamous cell cancer of the head and neck.
This phase I/Ib trial tests the safety and best dose of ipatasertib in combination with the usual treatment approach using chemotherapy together with radiation therapy ("chemo-radiation") in patients with head and neck cancer. Ipatasertib is in a class of medications called protein kinase B (AKT) inhibitors. It may stop the growth of tumor cells and may kill them. Cisplatin which is a chemotherapy used in this trial is in a class of medications known as platinum-containing compounds. It works by killing, stopping or slowing the growth of cancer cells. Radiation therapy uses high energy to kill tumor cells and shrink tumors. Giving ipatasertib in combination with chemo-radiation may be better than chemo-radiation alone in treating patients with advanced head and neck cancer.
This phase II trial studies the good and bad effects of the combination of drugs called cabozantinib and nivolumab in treating patients with melanoma or squamous cell head and neck cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial may help doctors determine how quickly patients can be divided into groups based on biomarkers in their tumors. A biomarker is a biological molecule found in the blood, other body fluids, or in tissues that is a sign of a normal or abnormal process or a sign of a condition or disease. A biomarker may be used to see how well the body responds to a treatment for a disease or condition. The two biomarkers that this trial is studying are "tumor mutational burden" and "tumor inflammation signature." Another purpose of this trial is to help doctors learn if cabozantinib and nivolumab shrink or stabilize the cancer, and whether patients respond differently to the combination depending on the status of the biomarkers.
This phase II/III compares the standard therapy (chemotherapy plus cetuximab) versus adding bevacizumab to standard chemotherapy, versus combination of just bevacizumab and atezolizumab in treating patients with head and neck cancer that has spread to other places in the body (metastatic or advanced stage) or has come back after prior treatment (recurrent). Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Bevacizumab is in a class of medications called antiangiogenic agents. It works by stopping the formation of blood vessels that bring oxygen and nutrients to tumor. This may slow the growth and spread of tumor. Cetuximab is in a class of medications called monoclonal antibodies. It binds to a protein called EGFR, which is found on some types of cancer cells. This may help keep cancer cells from growing. Cisplatin and carboplatin are in a class of chemotherapy medications known as platinum-containing compounds. They work by killing, stopping, or slowing the growth of cancer cells. Docetaxel is in a class of chemotherapy medications called taxanes. It stops cancer cells from growing and dividing and may kill them. The addition of bevacizumab to standard chemotherapy or combination therapy with bevacizumab and atezolizumab may be better than standard chemotherapy plus cetuximab in treating patients with recurrent/metastatic head and neck cancers.
This phase I trial studies the side effects of image-guided hyper-fractioned proton therapy in treating patients with head and neck cancer that has spread to nearby tissue or lymph nodes (locally advanced) and cannot be removed by surgery (unresectable). Radiation therapy uses high energy protons to kill tumor cells and shrink tumors. The change in dose radiation frequency and dose investigated in this study may help to better control the tumor and prevent it from coming back or growing. The goal of this study is to test a new radiation schedule that administers more radiation to the tumor tissue using image guided proton therapy for patients that have a high risk of having a tumor recurrence (the tumor comes back after treatment).
This phase I trial evaluates the best dose, possible benefits and/or side effects of combination therapy with elimusertib (BAY 1895344), stereotactic body radiation, and pembrolizumab in treating patients with head and neck squamous cell cancer that has come back (recurrent) and cannot be removed by surgery (unresectable). BAY 1895344 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Stereotactic body radiation therapy uses special equipment to position a patient and deliver radiation to tumors with high precision. This method may kill tumor cells with fewer doses over a shorter period and cause less damage to normal tissue. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving BAY 1895344, stereotactic body radiation therapy in combination with pembrolizumab may shrink or stabilize head and neck squamous cell cancer for longer than treatment with radiation and immunotherapy without BAY 1895344.