370 Clinical Trials for Various Conditions
This randomized phase II trial studies how well surgical removal of the prostate and antiandrogen therapy with or without docetaxel work in treating men with newly diagnosed prostate cancer that has spread to other places in the body. Androgens can cause the growth of prostate cancer cells. Antiandrogen therapy may lessen the amount of androgens made by the body. Drugs used in chemotherapy, such as docetaxel work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Surgery, antiandrogen therapy and docetaxel may work better in treating participants with prostate cancer.
This randomized phase III trial studies how well stereotactic body radiation therapy works compared to intensity-modulated radiation therapy in treating patients with stage IIA-B prostate cancer. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Stereotactic body radiation therapy is a specialized radiation therapy that sends x-rays directly to the tumor using smaller doses over several days and may cause less damage to normal tissue. Stereotactic body radiation therapy may work better in treating patients with prostate cancer.
This phase II trial studies how well gallium Ga 68-labeled gastrin-releasing peptide receptor (GRPR) antagonist BAY86-7548 (68Ga-RM2) positron emission tomography (PET)/computed tomography (CT) works in detecting regional nodal and distant metastases in patients with intermediate or high-risk prostate cancer. 68Ga-RM2 PET/CT scan may be able to see smaller tumors than the standard of care CT or magnetic resonance imaging scan.
This randomized phase II/III trial studies docetaxel, antiandrogen therapy, and radiation therapy to see how well it works compared with antiandrogen therapy and radiation therapy alone in treating patients with prostate cancer that has been removed by surgery. Androgen can cause the growth of prostate cells. Antihormone therapy may lessen the amount of androgen made by the body. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as docetaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving antiandrogen therapy and radiation therapy with or without docetaxel after surgery may kill any remaining tumor cells.
This randomized phase II trial studies how well androgen receptor antagonist ARN-509 works with or without abiraterone acetate, gonadotropin-releasing hormone agonist, and prednisone in treating patients with high-risk prostate cancer undergoing surgery. Androgen can cause the growth of prostate cancer cells. Hormone therapy using androgen receptor antagonist ARN-509, abiraterone acetate, and gonadotropin-releasing hormone analog (GnRH agonist) may fight prostate cancer by lowering the levels of androgen the body makes. Prednisone may either kill the tumor cells or stop them from dividing. Giving androgen receptor agonist ARN-509 with or without abiraterone acetate, GnRH agonist and prednisone may work better in treating patients with prostate cancer.
This phase II trial studies how well apalutamide, abiraterone acetate, prednisone, degarelix, and indomethacin work in treating patients with prostate cancer that has spread from where it started to nearby tissue or lymph nodes before surgery. Androgen can cause the growth of tumor cells. Hormone therapy using apalutamide, abiraterone acetate, prednisone, degarelix, and indomethacin may fight prostate cancer by lowering the amount of androgen the body makes and/or blocking the use of androgen by the tumor cells.
This phase I trial studies stereotactic body radiation therapy (SBRT) in treating patients with prostate cancer that is likely to come back or spread (high-risk) undergoing surgery. Stereotactic body radiation therapy uses special equipment to position a patient and deliver radiation to tumors with high precision. This method can kill tumor cells with fewer doses over a shorter period and cause less damage to normal tissue. Delivering radiotherapy before prostatectomy by SBRT is more convenient, conformal, and may spare normal tissues better than delivering radiotherapy after prostatectomy.
This phase 2-3 trial studies the utility of 68-gallium (68Ga)-prostate-specific membrane antigen 11 (PSMA-11) positron emission tomography/magnetic resonance imaging (PET/MRI) to find tumors in patients with prostate cancer who are undergoing resection surgery for prostate cancer that is prognostically expected to spread quickly (intermediate-risk) or is likely to come back or spread (high-risk). Diagnostic procedures, such as PET/MRI, may help find and diagnose prostate cancer, and reveal out how far the disease has spread. Radioactive drugs, such as 68Ga-PSMA-11, may bind to tumor cells that have specific receptors, and may allow doctors to see smaller tumors than the standard of care contrast-enhanced computed tomography (CT) or MRI scan.
This pilot clinical trial studies targeted biopsies in determining response in patients with prostate cancer undergoing high-dose-rate brachytherapy (a type of radiation therapy in which radioactive material sealed in needles, seeds, wires, or catheters is placed directly into or near a tumor). Studying tumor tissue obtained before and after treatment may help doctors understand changes in a pathway that looks at how deoxyribonucleic acid (DNA) is repaired after it is damaged and to see if there are differences in the prostate tissue prior to and after starting androgen deprivation therapy.
This phase I trial studies the side effects and best dose of multitargeted tyrosine kinase inhibitor PLX3397 (PLX3397) when given together with radiation therapy and antihormone therapy in treating patients with prostate cancer that is at intermediate or high risk of spreading. Multitargeted tyrosine kinase inhibitor PLX3397 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth, and may also help the radiation therapy work better. Radiation therapy uses high-energy x-rays to kill tumor cells. Androgens can cause the growth of prostate cancer cells. Antihormone therapy, such as leuprolide acetate, goserelin acetate, or degarelix, may lessen the amount of androgens made by the body. Giving multitargeted tyrosine kinase inhibitor PLX3397 with radiation therapy and antihormone therapy may be a better treatment for prostate cancer.
This phase I/II trial studies the side effects and best dose of stereotactic body radiation therapy while using intensity-modulated radiation therapy (IMRT) planning to help avoid radiation to normal tissue in patients with prostate cancer. Stereotactic body radiation therapy is a specialized radiation therapy that sends x-rays directly to the tumor using small, high doses of radiation over several days and may cause less damage to normal tissue. This treatment schedule allows for a higher dose of radiation to be administered over a shorter overall treatment period in comparison to standard radiation therapy.
This phase I trial studies the side effects and the best dose of hypofractionated stereotactic body radiation therapy (SBRT) in treating patients with prostate cancer that was removed by surgery. Hypofractionated SBRT delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and may have fewer side effects than standard radiation therapy.
This randomized phase II trial studies how well PROSTVAC (prostate-specific antigen \[PSA\]-TRICOM) works in preventing disease progression in patients with prostate cancer undergoing active surveillance. Vaccines made from a person's tumor cells may help the body build an effective immune response to kill tumor cells that express PSA.
This phase II trial studies the side effects and how well hypofractionated proton beam radiation therapy works in treating patients with prostate cancer that has not spread to nearby lymph nodes or to other parts of the body. Specialized radiation therapy, such as proton beam radiation therapy, that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue.
This phase II trial studies how well stereotactic body radiation therapy works in treating patients with prostate cancer that has not spread to other parts of the body and have undergone surgery. Stereotactic body radiation therapy is a specialized radiation therapy that sends x-rays directly to the tumor using smaller doses over several days and may cause less damage to normal tissue.
This phase II trial studies the how well apalutamide with or without stereotactic body radiation therapy work in treating participants with castration-resistant prostate cancer. Testosterone can cause the growth of prostate cancer cells. Hormone therapy using apalutamide may fight prostate cancer by blocking the use of testosterone by the tumor cells. Stereotactic body radiation therapy uses special equipment to position a patient and deliver radiation to tumors with high precision. This method can kill tumor cells with fewer doses over a shorter period and cause less damage to normal tissue. It is not yet known whether giving apalutamide with or without stereotactic body radiation therapy works better in treating participants with castration-resistant cancer.
This phase II trials studies the side effects and how well ESK981 works in treating patients with castration-resistant prostate cancer that has spread to other places in the body. ESK981 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase II trial studies how well docetaxel with carboplatin followed by rucaparib camsylate works in treating patients with metastatic castration resistant prostate cancer (spread outside of prostate and resistant to testosterone suppression) with homologous recombination DNA repair deficiency. Chemotherapy drugs, such as docetaxel and carboplatin, work to stop the growth of cancer cells, by stopping them from dividing or spreading. Rucaparib camsylate may stop the growth of tumor cells with defects in the ability to repair mistakes in DNA by forcing additional errors so that the cancer cells cannot overcome the number of errors and will then die. Giving induction docetaxel and carboplatin followed by maintenance rucaparib camsylate may work better in treating patients with castration resistant prostate cancer.
This randomized phase II trial studies how well abiraterone acetate and antiandrogen therapy, with or without cabazitaxel and prednisone, work in treating patients with castration-resistant prostate cancer previously treated with docetaxel that has spread to other parts of the body. Androgens can cause the growth of prostate cancer cells. Hormone therapy using abiraterone acetate and antiandrogen therapy may fight prostate cancer by lowering and/or blocking the use of androgens by the tumor cells. Drugs used in chemotherapy, such as cabazitaxel and prednisone, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving abiraterone acetate and antiandrogen therapy with or without cabazitaxel and prednisone may help kill more tumor cells.
This phase II trial studies how well pembrolizumab and HER2Bi-armed activated T cells work in treating patients with castration resistant prostate cancer that has spread to other places in the body. Monoclonal antibodies, such as pembrolizumab, may interfere with the ability of tumor cells to grow and spread. HER2Bi-armed activated T cells are made using T cells and may target and kill cancer cells. Giving pembrolizumab and HER2Bi-armed activated T cells may work better in treating patients with castration resistant prostate cancer.
This phase II trial studies how well radiation therapy with or without apalutamide works in treating patients with prostate cancer that has come back (recurrent). Radiation therapy uses high energy x-ray to kill tumor cells and shrink tumors. Androgen can cause the growth of prostate cancer cells. Drugs, such as apalutamide, may lessen the amount of androgen made by the body. Giving radiation therapy and apalutamide may work better at treating prostate cancer compared to radiation therapy alone.
This randomized phase III trial studies how well hypofractionated radiation therapy works compared to conventional radiation therapy after surgery in treating patients with prostate cancer. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Conventional radiation therapy uses high energy x-rays, gamma rays, neutrons, protons, or other sources to kill tumor cells and shrink tumors. It is not yet known whether giving hypofractionated radiation therapy or conventional radiation therapy after surgery may work better in treating patients with prostate cancer.
This phase Ib trial studies the side effects and best dose of niraparib when given together with radium Ra223 dichloride in treating subjects with prostate cancer that keeps growing even when the amount of testosterone in the body is reduced to very low levels and has spread from the primary site to the bone. Radium Ra 223 dichloride, acts like calcium to target cancer in the bones and may deliver radiation directly to the bone tumors, limiting damage to the surrounding normal tissue. Niraparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving radium Ra 223 dichloride and niraparib may work better in treating subjects with hormone-resistant prostate cancer metastatic to the bone.
This randomized phase II trial studies how well olaparib with or without cediranib works in treating patients with castration-resistant prostate cancer that has spread to other places in the body (metastatic). PARPs are proteins that help repair DNA mutations. PARP inhibitors, such as olaparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. Cediranib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving olaparib and cediranib may help treat patients with castration-resistant prostate cancer.
This phase II trial studies how well cabazitaxel and prednisone work in treating patients with hormone-resistant prostate cancer that has spread to other parts of the body. Drugs used in chemotherapy, such as cabazitaxel and prednisone, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
This randomized phase II trial studies the side effects and how well abiraterone acetate, prednisone, and apalutamide work with or without ipilimumab or cabazitaxel and carboplatin in treating patients with castration-resistant prostate cancer that has spread to other places in the body. Androgens can cause the growth of prostate cancer cells. Drugs, such as abiraterone acetate and apalutamide may lessen the amount of androgens made by the body. Immunotherapy with monoclonal antibodies, such as ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as prednisone, cabazitaxel, and carboplatin work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether giving abiraterone acetate, prednisone, and apalutamide with or without ipilimumab or cabazitaxel and carboplatin may be a better way to treat patients with castration-resistant prostate cancer that has spread to other places in the body.
This phase II trial studies how well nivolumab and ipilimumab work in treating patients with hormone-resistant prostate cancer that has spread to other places in the body and express androgen receptor-variant-7 (AR-V7). Tumor cells expressing AR-V7 has been shown to be resistant to hormone therapy and some chemotherapy in patients with prostate cancer. Biomarker-driven therapy, such as nivolumab and ipilimumab, may work by blocking key biomarkers or proteins that help tumor cells to escape the immune system surveillance and this may help the immune system to kill tumor cells that express AR-V7.
This phase I trial studies the side effects and best dose of niclosamide when given together with enzalutamide in treating patients with castration resistant prostate cancer that has spread from the primary site to other places in the body. Androgens such as testosterone can cause the growth of prostate cancer cells. Drugs like enzalutamide block androgens from driving tumor growth; however, when androgen receptor splice variants are present, these drugs may not be effective. Niclosamide may decrease the amount of androgen receptor splice variant present within tumor cells, thus promoting the anti-tumor effects of enzalutamide. Giving niclosamide together with enzalutamide may be a better treatment for prostate cancer.
This phase II trial studies how well pembrolizumab works in treating patients with prostate cancer that has spread to other places in the body and keeps growing even when the amount of testosterone in the body is reduced to very low levels despite previous treatment with enzalutamide. Monoclonal antibodies, such as pembrolizumab, may block tumor growth in different ways by targeting certain cells.
This phase II trial studies selinexor in treating patients with prostate cancer that has spread to other parts of the body (metastatic), keeps growing even when the amount of testosterone in the body is reduced to very low levels (castration-resistant), and did not respond to treatment (refractory) with abiraterone acetate and/or enzalutamide. Selinexor may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.