23 Clinical Trials for Various Conditions
This clinical trial studies genetically modified peripheral blood stem cell transplant in treating patients with HIV-associated non-Hodgkin or Hodgkin lymphoma. Giving chemotherapy before a peripheral stem cell transplant stops the growth of cancer cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's blood and stored. More chemotherapy or radiation therapy is then given to prepare the bone marrow for the stem cell transplant. Laboratory-treated stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy and radiation therapy
This phase I trial studies the side effect and best dose of ibrutinib in combination with rituximab, etoposide, prednisone, vincristine sulfate, cyclophosphamide, and doxorubicin hydrochloride in treating patients with human immunodeficiency virus (HIV)-positive stage II-IV diffuse large B-cell lymphomas. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as rituximab, may interfere with the ability of cancer cells to grow and spread. Drugs used in chemotherapy, such as etoposide, prednisone, vincristine sulfate, cyclophosphamide, and doxorubicin hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ibrutinib and etoposide, prednisone, vincristine sulfate, cyclophosphamide, and doxorubicin hydrochloride may work better in treating patients with HIV-positive diffuse large B-cell lymphomas.
This pilot phase I/II trial studies the side effects and the best dose of brentuximab vedotin when given together with combination chemotherapy and to see how well they work in treating patients with stage II-IV human immunodeficiency virus (HIV)-associated Hodgkin lymphoma. Brentuximab vedotin is a monoclonal antibody, called brentuximab, linked to a chemotherapy drug called vedotin. Brentuximab attaches to CD30-positive cancer cells in a targeted way and delivers vedotin to kill them. Drugs used in chemotherapy, such as doxorubicin hydrochloride, vinblastine sulfate, and dacarbazine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving brentuximab vedotin together with combination chemotherapy may kill more cancer cells.
This partially randomized phase I/II trial studies the side effects and the best dose of vorinostat when given together with combination chemotherapy and rituximab to see how well it works compared to combination chemotherapy alone in treating patients with human immunodeficiency virus-related diffuse large B-cell non-Hodgkin lymphoma or other aggressive B-cell lymphomas. Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as rituximab, may interfere with the ability of cancer cells to grow and spread. Giving vorinostat together with combination chemotherapy and rituximab may kill more cancer cells.
RATIONALE: Gathering information about how often methemoglobinemia occurs in young patients receiving dapsone for hematologic cancer or aplastic anemia may help doctors learn more about the disease and plan the best treatment. PURPOSE: This research study is looking at methemoglobinemia in young patients with hematologic cancer or aplastic anemia treated with dapsone.
This randomized phase II trial is studying how well giving combination chemotherapy together with rituximab works in treating patients with HIV-associated stage I, stage II, stage III, or stage IV non-Hodgkin's lymphoma. Drugs used in chemotherapy work in different ways to stop cancer cells from dividing so they stop growing or die. Monoclonal antibodies such as rituximab can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Combining chemotherapy with monoclonal antibody therapy may kill more cancer cells.
RATIONALE: Measuring the number of radiolabeled white blood cells in non-Hodgkin's lymphoma tumors may help doctors predict how well patients will respond to treatment, and may help the study of cancer in the future. PURPOSE: This study is measuring radiolabeled white blood cells in patients with non-Hodgkin's lymphoma.
RATIONALE: Epoetin alfa and darbepoetin alfa may cause the body to make more red blood cells. They are used to treat anemia caused by chemotherapy in patients with cancer. PURPOSE: This randomized clinical trial is studying four different schedules of epoetin alfa or darbepoetin alfa to compare how well they work in treating patients with anemia caused by chemotherapy.
RATIONALE: Drugs used in chemotherapy, such as doxorubicin hydrochloride liposome, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving rituximab together with combination chemotherapy may kill more cancer cells. PURPOSE: This phase II trial is studying how well giving doxorubicin hydrochloride liposome and rituximab together with combination chemotherapy works in treating patients with newly diagnosed Burkitt's lymphoma or Burkitt-like lymphoma.
RATIONALE: Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving rituximab together with combination chemotherapy may kill more cancer cells. PURPOSE: This phase II trial is studying how well giving rituximab together with combination chemotherapy works in treating patients with newly diagnosed, HIV-associated Burkitt's lymphoma.
RATIONALE: Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some find cancer cells and help kill them or carry cancer-killing substances to them. Others interfere with the ability of cancer cells to grow and spread. Giving combination chemotherapy together with rituximab may kill more cancer cells. PURPOSE: This phase II trial is studying how well giving combination chemotherapy together with rituximab works in treating patients with newly diagnosed AIDS-related B-cell non-Hodgkin's lymphoma.
RATIONALE: Epoetin alfa may cause the body to make more red blood cells. It is used to treat anemia caused by cancer and chemotherapy. PURPOSE: This randomized phase II trial is studying how well epoetin alfa works in treating patients with anemia who are undergoing chemotherapy for cancer.
RATIONALE: Cyproheptadine and megestrol may improve appetite and help prevent weight loss in children with cancer. PURPOSE: This phase II trial is studying how well cyproheptadine and megestrol work in improving appetite and preventing weight loss in children with cachexia caused by cancer or cancer treatment.
RATIONALE: Heparin or enoxaparin may be effective in preventing the formation of blood clots in patients with cancer who are undergoing surgery to remove the tumor. PURPOSE: Randomized clinical trial to compare the effectiveness of heparin with that of enoxaparin in patients who have cancer.
RATIONALE: Interleukin-2 may stimulate a person's white blood cells to kill cancer cells. PURPOSE: Phase I trial to study the effectiveness of interleukin-2 following bone marrow transplantation in treating patients who have hematologic cancer at risk of relapse.
Phase I trial to study the effectiveness of penclomedine in treating patients with malignant solid tumors or lymphomas. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die.
The purpose of this phase I/II trial is to study the side effects and best dose of biological therapy to treat patients at high-risk or with Epstein-Barr virus-associated lymphoma or lymphoproliferative disease.
RATIONALE: Interferon alfa may interfere with the growth of cancer cells. PURPOSE: Phase II trial to study the effectiveness of interferon alfa in treating children with an HIV-related cancer including leukemia, non-Hodgkin's lymphoma, CNS lymphoma, or other solid tumors.
RATIONALE: Physician-initiated smoking cessation strategies may be effective in getting early-stage cancer patients to quit smoking. PURPOSE: Randomized clinical trial to compare the effectiveness of a physician-initiated stop-smoking program with the usual care for patients receiving treatment for early-stage cancer.
RATIONALE: Photodynamic therapy uses light and drugs that make cancer cells more sensitive to light to kill tumor cells. This may be effective treatment for skin cancer and cancer that is metastatic to the skin. PURPOSE: Phase I trial to study the effectiveness of photodynamic therapy in treating patients who have either squamous cell or basal cell carcinoma of the skin or solid tumors metastatic to the skin.
RATIONALE: Methadone, morphine, or oxycodone may help relieve pain caused by cancer. It is not yet known whether methadone is more effective than morphine or oxycodone in treating pain in patients with cancer. PURPOSE: This randomized clinical trial is studying methadone to see how well it works compared with morphine or oxycodone in treating pain in patients with cancer.
RATIONALE: Drugs used in chemotherapy, such as topotecan, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. PURPOSE: This phase I trial is studying the side effects, best way to give, and best dose of topotecan when given by intraventricular infusion in treating young patients with neoplastic meningitis due to leukemia, lymphoma, or solid tumors.
RATIONALE: Thalidomide may stop the growth of cancer by stopping blood flow to the tumor. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining thalidomide with docetaxel may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of combining thalidomide with docetaxel in treating patients who have advanced cancer.