106 Clinical Trials for Various Conditions
This clinical trial studies massage therapy given by caregiver in treating quality of life of young patients undergoing treatment for cancer. Massage therapy given by a caregiver may improve the quality of life of young patients undergoing treatment for cancer
Phase II trial to study the effectiveness of combining rituximab and rasburicase with combination chemotherapy in treating young patients who have newly diagnosed advanced B-cell leukemia or lymphoma. Monoclonal antibodies such as rituximab can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Drugs used in chemotherapy work in different ways to stop cancer cells from dividing so they stop growing or die. Combining more than one drug with rituximab may kill more cancer cells. Chemoprotective drugs such as rasburicase may protect kidney cells from the side effects of chemotherapy.
Ex vivo expanded human myeloid progenitor cells (hMPCs; CLT-008) have the potential to accelerate neutrophil recovery in patients receiving myeloablative conditioning as part of an umbilical cord blood transplant for hematologic cancer. In this study, the safety and tolerability of CLT-008 administered 24 hours after an umbilical cord blood transplant will be determined by monitoring for adverse reactions, neutrophil and platelet recovery, hematopoietic chimerism, graft-versus-host disease (GVHD), and infections.
RATIONALE: Recombinant human mannose-binding lectin (MBL) may be effective in preventing infection in young patients with fever and neutropenia receiving chemotherapy for blood disease or cancer. PURPOSE: This phase I trial is studying the side effects and best dose of recombinant human mannose-binding lectin in treating young patients with MBL deficiency and fever and neutropenia.
RATIONALE: Glutamic acid may help lessen or prevent nerve damage caused by vincristine. It is not yet known whether glutamic acid is more effective than a placebo in preventing nerve damage in patients receiving vincristine for Wilms' tumor, rhabdomyosarcoma, acute lymphoblastic leukemia, or non-Hodgkin's lymphoma. PURPOSE: This randomized phase III trial is studying glutamic acid to see how well it works compared to a placebo in reducing nerve damage caused by vincristine in young patients receiving vincristine for Wilms' tumor, rhabdomyosarcoma, acute lymphoblastic leukemia, or non-Hodgkin's lymphoma.
RATIONALE: Glutamine may help lessen neuropathy caused by chemotherapy. It is not yet known whether glutamine is more effective than a placebo in treating neuropathy caused by vincristine. PURPOSE: This randomized phase II trial is studying glutamine to see how well it works compared to a placebo in treating neuropathy caused by vincristine in young patients with lymphoma, leukemia, or solid tumors.
RATIONALE: New imaging procedures, such as whole-body MRI, may improve the ability to detect metastatic cancer and determine the extent of disease. PURPOSE: This clinical trial is studying whole-body MRI to see how well it works compared to standard imaging procedures in detecting distant metastases in patients with solid tumors or lymphoma.
RATIONALE: Using an Internet Web site that enables children with cancer to interact online with classmates, participate in classroom activities, get easy-to-read medical information, and chat with family members, medical staff, and other children with cancer may help children cope with isolation, fear, and decreased self-esteem. PURPOSE: This phase I/II trial is studying the effectiveness of an Internet Web site in providing social support and education to children who are undergoing treatment for cancer.
RATIONALE: Voriconazole may be effective in preventing systemic fungal infections following chemotherapy. PURPOSE: Phase II trial to study the effectiveness of voriconazole in preventing systemic fungal infections in children who have neutropenia after receiving chemotherapy for leukemia, lymphoma, or aplastic anemia or in preparation for bone marrow or stem cell transplantation.
RATIONALE: Cyproheptadine and megestrol may improve appetite and help prevent weight loss in children with cancer. PURPOSE: This phase II trial is studying how well cyproheptadine and megestrol work in improving appetite and preventing weight loss in children with cachexia caused by cancer or cancer treatment.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining chemotherapy with peripheral stem cell transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells. Biological therapies such as interleukin-2 use different ways to stimulate the immune system and stop cancer cells from growing. PURPOSE: Phase II trial to study the effectiveness of combination chemotherapy, peripheral stem cell transplantation, and interleukin-2 in treating patients who have solid tumors or lymphoma.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of two treatment regimens for patients in developing countries with diffuse non-Hodgkin's lymphoma and acute lymphoblastic leukemia.
RATIONALE: Giving chemotherapy drugs and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It also helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. PURPOSE: This phase II trial is studying the effectiveness of donor peripheral blood stem cell transplant in treating patients with hematologic cancer.
RATIONALE: Bone marrow transplantation may be able to replace immune cells that were destroyed by chemotherapy or radiation therapy used to kill tumor cells. Sometimes the transplanted cells can make an immune response against the body's normal tissues. Treatment of the donor bone marrow with the patient's white blood cells and a monoclonal antibody may prevent this from happening. PURPOSE: Phase I trial to study the effectiveness of bone marrow transplantation with specially treated bone marrow in treating patients who have hematologic cancer that has not responded to previous therapy.
RATIONALE: Questionnaires that measure quality of life may improve the ability to plan treatment for children with cancer. PURPOSE: This randomized clinical trial is studying the quality of life in children treated for cancer.
RATIONALE: Radiation therapy uses high-energy x-rays to damage cancer cells. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Peripheral stem cell transplantation may allow doctors to give higher doses of chemotherapy drugs and kill more cancer cells. PURPOSE: Phase I/II trial to study the effectiveness of radiation therapy and chemotherapy plus peripheral stem cell transplantation in treating patients who have high-grade lymphoma or acute lymphoblastic leukemia.
The purpose of this phase I/II trial is to study the side effects and best dose of biological therapy to treat patients at high-risk or with Epstein-Barr virus-associated lymphoma or lymphoproliferative disease.
RATIONALE: Interferon alfa may interfere with the growth of cancer cells. PURPOSE: Phase II trial to study the effectiveness of interferon alfa in treating children with an HIV-related cancer including leukemia, non-Hodgkin's lymphoma, CNS lymphoma, or other solid tumors.
RATIONALE: Taking part in a clinical trial may help children with cancer receive more effective treatment. PURPOSE: Determine why patients who are eligible for protocols made available through the Pediatric Oncology Group do not enroll in them, and develop strategies to increase enrollment on these clinical trials.
This partially randomized phase II trial studies how well brentuximab vedotin or crizotinib and combination chemotherapy works in treating patients with newly diagnosed stage II-IV anaplastic large cell lymphoma. Brentuximab vedotin is a monoclonal antibody, called brentuximab, linked to a toxic agent called vedotin. Brentuximab attaches to CD30 positive cancer cells in targeted way and delivers vedotin to kill them. Crizotinib and methotrexate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether brentuximab vedotin and combination chemotherapy is more effective than crizotinib and combination chemotherapy in treating anaplastic large cell lymphoma.
This clinical trial studies personalized dose monitoring of busulfan and combination chemotherapy in treating patients with Hodgkin or non-Hodgkin lymphoma undergoing stem cell transplant. Giving chemotherapy before a stem cell transplant stops the growth of cancer cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's peripheral blood or bone marrow and stored. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. Monitoring the dose of busulfan may help doctors deliver the most accurate dose and reduce toxicity in patients undergoing stem cell transplant.
RATIONALE: Giving chemotherapy before a donor umbilical cord blood transplant (UCBT) helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the stem cells from an unrelated donor, that do not exactly match the patient's blood, are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving antithymocyte globulin before transplant and cyclosporine and mycophenolate mofetil after transplant may stop this from happening. PURPOSE: This phase II trial is studying how well donor umbilical cord blood stem cell transplant works in treating patients with hematologic malignancies.
This clinical trial is studying how well giving fludarabine phosphate and melphalan together with total-body irradiation followed by donor stem cell transplant works in treating patients with hematologic cancer or bone marrow failure disorders. Giving low doses of chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells or abnormal cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer or abnormal cells (graft-versus-tumor effect)
RATIONALE: Ondansetron may help lessen or prevent nausea and vomiting in patients undergoing stem cell transplant. PURPOSE: This phase II trial is studying how well ondansetron works in preventing nausea and vomiting in patients undergoing stem cell transplant.
RATIONALE: Lithium carbonate may be an effective treatment for intestinal graft-versus-host disease caused by a donor stem cell transplant. PURPOSE: This clinical trial is studying lithium carbonate in treating patients with acute intestinal graft-versus-host-disease after donor stem cell transplant.
This phase I multicenter feasibility trial is studying the safety and potential efficacy of infusing ex vivo expanded cord blood progenitors with one unmanipulated umbilical cord blood unit for transplantation following conditioning with fludarabine, cyclophosphamide and total body irradiation (TBI), and immunosuppression with cyclosporine and mycophenolate mofetil (MMF) for patients with hematologic malignancies. Chemotherapy, such as fludarabine and cyclophosphamide, and TBI given before an umbilical cord blood transplant stops the growth of leukemia cells and works to prevent the patient's immune system from rejecting the donor's stem cells. The healthy stem cells from the donor's umbilical cord blood help the patient's bone marrow make new red blood cells, white blood cells, and platelets. It may take several weeks for these new blood cells to grow. During that period of time, patients are at increased risk for bleeding and infection. Faster recovery of white blood cells may decrease the number and severity of infections. Studies have shown that counts are more likely to recover more quickly if increased numbers of cord blood cells are given with the transplant. We have developed a way of growing or "expanding" the number of cord blood cells in the lab so that there are more cells available for transplant. We are doing this study to find out whether or not giving these expanded cells along with one unexpanded cord blood unit is safe and if use of expanded cells can decrease the time it takes for white blood cells to recover after transplant. We will study the time it takes for blood counts to recover, which of the two cord blood units makes up the patient's new blood system, and how quickly immune system cells return
This randomized phase II trial studies how well giving tacrolimus and mycophenolate mofetil (MMF) with or without sirolimus works in preventing acute graft-versus-host disease (GVHD) in patients undergoing donor stem cell transplant for hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, and total-body-irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune system and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving MMF and tacrolimus with or without sirolimus after transplant may stop this from happening.
This phase I/II trial studies whether stopping cyclosporine before mycophenolate mofetil is better at reducing the risk of life-threatening graft-versus-host disease (GVHD) than the previous approach where mycophenolate mofetil was stopped before cyclosporine. The other reason this study is being done because at the present time there are no curative therapies known outside of stem cell transplantation for these types of cancer. Because of age or underlying health status, patients may have a higher likelihood of experiencing harm from a conventional blood stem cell transplant. This study tests whether this new blood stem cell transplant method can be made safer by changing the order and length of time that immune suppressing drugs are given after transplant.
This phase II trial studies how well giving fludarabine phosphate, cyclophosphamide, tacrolimus, mycophenolate mofetil and total-body irradiation together with a donor bone marrow transplant works in treating patients with high-risk hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate and cyclophosphamide, and total-body irradiation before a donor bone marrow transplant helps stop the growth of cancer cells by stopping them from dividing or killing them. Giving cyclophosphamide after transplant may also stop the patient's immune system from rejecting the donor's bone marrow stem cells. The donated stem cells may replace the patient's immune system cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and mycophenolate mofetil after the transplant may stop this from happening
This phase II trial studies the side effects and the best dose of alemtuzumab when given together with fludarabine phosphate and low-dose total body irradiation (TBI) and how well it works before donor stem cell transplant in treating patients with hematological malignancies. Giving chemotherapy and low-dose TBI before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. Also, monoclonal antibodies, such as alemtuzumab, can find cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine (CSP) and mycophenolate mofetil (MMF) after transplant may stop this from happening.