Treatment Trials

151 Clinical Trials for Various Conditions

Focus your search

ACTIVE_NOT_RECRUITING
Brentuximab Vedotin and Lenalidomide in Treating Patients With Stage IB-IVB Relapsed or Refractory T-Cell Lymphoma
Description

This phase II trial studies how well brentuximab vedotin and lenalidomide work in treating patients with stage IB-IVB T-cell lymphoma that have come back or do not respond to treatment. Monoclonal antibodies, such as brentuximab vedotin, may interfere with the ability of cancer cells to grow and spread. Drugs used in chemotherapy, such as lenalidomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving brentuximab vedotin and lenalidomide may work better in treating patients with T-cell lymphoma.

ACTIVE_NOT_RECRUITING
Romidepsin and Lenalidomide in Treating Patients With Previously Untreated Peripheral T-Cell Lymphoma
Description

The purpose of this study is to evaluate how safe and effective the combination of the study drugs romidepsin and lenalidomide is for treating patients with peripheral t-cell lymphoma (PTCL) who have not been previously treated for this cancer. Currently, there is no standard treatment for patients with PTCL; the most common treatment used is a combination of drugs called CHOP, but this can be a difficult treatment to tolerate because of side effects, and is not particularly effective for most patients with PTCL. Romidepsin (Istodax®) is a type of drug called an HDAC inhibitor. It interacts with DNA (genetic material in cells) in ways that can stop tumors from growing. It is given as an infusion through the veins. Lenalidomide (Revlimid®) is a type of drug known as an immunomodulatory drug, or IMID for short. This drug affects how tumor cells grow and survive, including affecting blood vessel growth in tumors. It is given as an oral tablet (by mouth).

COMPLETED
Silicon Phthalocyanine 4 and Photodynamic Therapy in Stage IA-IIA Cutaneous T-Cell Non-Hodgkin Lymphoma
Description

This phase I trial studies the side effects and best dose of silicon phthalocyanine 4 and photodynamic therapy in treating patients with stage IA-IIA cutaneous T-cell non-Hodgkin lymphoma. Photodynamic therapy (PDT) uses a drug, silicon phthalocyanine 4, that becomes active when it is exposed to a certain kind of light. When the drug is active, cancer cells are killed. This may be effective against cutaneous T-cell non-Hodgkin lymphoma. Funding Source - FDA OOPD

TERMINATED
Dose-Escalation Trial of Carfilzomib With and Without Romidepsin in Cutaneous T-Cell Lymphoma
Description

This randomized phase I trial studies the side effects and the best dose of carfilzomib when given together with or without romidepsin in treating patients with stage IA-IVB cutaneous T-cell lymphoma. Carfilzomib and romidepsin may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. It is not yet known whether giving carfilzomib alone is more effective than when given together with romidepsin.

COMPLETED
Massage Therapy Given by Caregiver in Treating Quality of Life of Young Patients Undergoing Treatment for Cancer
Description

This clinical trial studies massage therapy given by caregiver in treating quality of life of young patients undergoing treatment for cancer. Massage therapy given by a caregiver may improve the quality of life of young patients undergoing treatment for cancer

Conditions
Accelerated Phase Chronic Myelogenous LeukemiaAcute Undifferentiated LeukemiaAngioimmunoblastic T-cell LymphomaAtypical Chronic Myeloid Leukemia, BCR-ABL1 NegativeBlastic Phase Chronic Myelogenous LeukemiaBurkitt LymphomaChildhood Acute Lymphoblastic Leukemia in RemissionChildhood Acute Myeloid Leukemia in RemissionChildhood Chronic Myelogenous LeukemiaChildhood Diffuse Large Cell LymphomaChildhood Grade III Lymphomatoid GranulomatosisChildhood Immunoblastic Large Cell LymphomaChildhood Myelodysplastic SyndromesChildhood Nasal Type Extranodal NK/T-cell LymphomaChronic Eosinophilic LeukemiaChronic Myelomonocytic LeukemiaChronic Neutrophilic LeukemiaChronic Phase Chronic Myelogenous LeukemiaContiguous Stage II Mantle Cell LymphomaCutaneous B-cell Non-Hodgkin LymphomaEssential ThrombocythemiaExtramedullary PlasmacytomaIntraocular LymphomaIsolated Plasmacytoma of BoneJuvenile Myelomonocytic LeukemiaMast Cell LeukemiaMeningeal Chronic Myelogenous LeukemiaNoncontiguous Stage II Mantle Cell LymphomaPolycythemia VeraPost-transplant Lymphoproliferative DisorderPrimary MyelofibrosisPrimary Systemic AmyloidosisProgressive Hairy Cell Leukemia, Initial TreatmentProlymphocytic LeukemiaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Acute Myeloid LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent/Refractory Childhood Hodgkin LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Hairy Cell LeukemiaRefractory Multiple MyelomaRelapsing Chronic Myelogenous LeukemiaSecondary Acute Myeloid LeukemiaStage 0 Chronic Lymphocytic LeukemiaStage I Childhood Anaplastic Large Cell LymphomaStage I Childhood Hodgkin LymphomaStage I Childhood Large Cell LymphomaStage I Childhood Lymphoblastic LymphomaStage I Childhood Small Noncleaved Cell LymphomaStage I Chronic Lymphocytic LeukemiaStage I Cutaneous T-cell Non-Hodgkin LymphomaStage I Multiple MyelomaStage I Mycosis Fungoides/Sezary SyndromeStage II Childhood Anaplastic Large Cell LymphomaStage II Childhood Hodgkin LymphomaStage II Childhood Large Cell LymphomaStage II Childhood Lymphoblastic LymphomaStage II Childhood Small Noncleaved Cell LymphomaStage II Chronic Lymphocytic LeukemiaStage II Cutaneous T-cell Non-Hodgkin LymphomaStage II Multiple MyelomaStage II Mycosis Fungoides/Sezary SyndromeStage III Childhood Anaplastic Large Cell LymphomaStage III Childhood Hodgkin LymphomaStage III Childhood Large Cell LymphomaStage III Childhood Lymphoblastic LymphomaStage III Childhood Small Noncleaved Cell LymphomaStage III Chronic Lymphocytic LeukemiaStage III Cutaneous T-cell Non-Hodgkin LymphomaStage III Multiple MyelomaStage III Mycosis Fungoides/Sezary SyndromeStage IV Childhood Anaplastic Large Cell LymphomaStage IV Childhood Hodgkin LymphomaStage IV Childhood Large Cell LymphomaStage IV Childhood Lymphoblastic LymphomaStage IV Childhood Small Noncleaved Cell LymphomaStage IV Chronic Lymphocytic LeukemiaStage IV Cutaneous T-cell Non-Hodgkin LymphomaStage IV Mycosis Fungoides/Sezary SyndromeT-cell Large Granular Lymphocyte LeukemiaUnspecified Childhood Solid Tumor, Protocol Specific
COMPLETED
Vorinostat, Rituximab, Ifosfamide, Carboplatin, and Etoposide in Treating Patients With Relapsed or Refractory Lymphoma or Previously Untreated T-Cell Non-Hodgkin Lymphoma or Mantle Cell Lymphoma
Description

This phase I/II trial is studying the side effects and best dose of vorinostat when given together with rituximab, ifosfamide, carboplatin, and etoposide and to see how well they work in treating patients with relapsed or refractory lymphoma or previously untreated T-cell non-Hodgkin lymphoma or mantle cell lymphoma. Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Drugs used in chemotherapy, such as ifosfamide, carboplatin, and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving vorinostat together with rituximab and combination chemotherapy may kill more cancer cells

TERMINATED
Interleukin-12 and Interleukin-2 in Treating Patients With Mycosis Fungoides
Description

Phase I/II trial to study the effectiveness of combining interleukin-12 with interleukin-2 in treating patients who have mycosis fungoides. Biological therapies, such as interleukin-12 and interleukin-2, use different ways to stimulate the immune system and stop cancer cells from growing. Combining more than one biological therapy may kill more tumor cells

TERMINATED
O6-benzylguanine and Carmustine in Treating Patients With Stage IA-IIA Cutaneous T-cell Lymphoma
Description

This phase I trial is studying the side effects and best dose of carmustine given together with O(6)-benzylguanine in treating patients with stage I or stage II cutaneous T-cell lymphoma that has not responded to previous treatment. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining more than one drug may kill more cancer cells

RECRUITING
Registry of Older Patients With Cancer
Description

RATIONALE: Gathering information about older patients with cancer may help the study of cancer in the future. PURPOSE: This research study is gathering information from older patients with cancer into a registry.

RECRUITING
Tissue, Blood, and Body Fluid Sample Collection From Patients With Hematologic Cancer
Description

RATIONALE: Collecting and storing samples of tissue, blood, and body fluid from patients with cancer to study in the laboratory may help the study of cancer in the future. PURPOSE: This research study is collecting and storing blood and tissue samples from patients being evaluated for hematologic cancer.

TERMINATED
Sirolimus, Tacrolimus, Thymoglobulin and Rituximab as Graft-versus-Host-Disease Prophylaxis in Patients Undergoing Haploidentical and HLA Partially Matched Donor Hematopoietic Cell Transplantation
Description

This Phase II clinical trial was designed for patients with hematologic malignancies in need of donor peripheral blood stem cell transplant, and have no HLA matched donor. Therefore It will test the efficacy of combining sirolimus, tacrolimus, antithymocyte globulin, and rituximab in preventing graft versus host disease in transplants from HLA Haploidentical and partially mismatched donors.

COMPLETED
Methemoglobinemia in Young Patients With Hematologic Cancer or Aplastic Anemia Treated With Dapsone
Description

RATIONALE: Gathering information about how often methemoglobinemia occurs in young patients receiving dapsone for hematologic cancer or aplastic anemia may help doctors learn more about the disease and plan the best treatment. PURPOSE: This research study is looking at methemoglobinemia in young patients with hematologic cancer or aplastic anemia treated with dapsone.

COMPLETED
Quality of Life in Younger Leukemia and Lymphoma Survivors
Description

RATIONALE: Collecting information about the effect of hematologic cancer and its treatment on quality of life may help doctors learn more about the disease and plan the best treatment. PURPOSE: This phase I trial is studying quality of life in younger leukemia and lymphoma survivors.

TERMINATED
Influenza Vaccine in Preventing Flu in Patients Who Have Undergone Stem Cell Transplant and in Healthy Volunteers
Description

RATIONALE: The influenza vaccine may help prevent flu in patients who have undergone stem cell transplant. PURPOSE: This clinical trial is studying how well the influenza vaccine works in preventing flu in patients who have undergone stem cell transplant and in healthy volunteers.

RECRUITING
3'-Deoxy-3'-[18F] Fluorothymidine PET Imaging in Patients With Cancer
Description

RATIONALE: Diagnostic procedures, such as 3'-deoxy-3'-\[18F\] fluorothymidine (FLT) PET imaging, may help find and diagnose cancer. It may also help doctors predict a patient's response to treatment and help plan the best treatment. PURPOSE: This phase I trial is studying FLT PET imaging in patients with cancer.

TERMINATED
Studying Fentanyl in Patients With Cancer
Description

RATIONALE: Studying blood samples from cancer patients undergoing pain treatment in the laboratory may help doctors learn more about how pain drugs work in the body. It may also help doctors predict how patients will respond to treatment. PURPOSE: This research study is looking at fentanyl in patients with cancer.

TERMINATED
Study of Pegylated Interferon-Alfa 2b in Combination With PUVA Therapy In CTCL
Description

RATIONALE: PEG-interferon alfa-2b may interfere with the growth of cancer cells and slow the growth of mycosis fungoides/Sezary syndrome. Ultraviolet light therapy uses a drug, such as psoralen, that is absorbed by cancer cells. The drug becomes active when it is exposed to ultraviolet light. When the drug is active, cancer cells are killed. Giving PEG-interferon alfa-2b together with ultraviolet light therapy may kill more cancer cell. PURPOSE: This is a pilot study of dose-escalating pegylated IFN-α-2b and PUVA or NB-UVB. The purpose is to study the side effects and best dose of PEG-interferon alfa-2b to be given together with ultraviolet light therapy in patients with stage IB, stage II, stage III, or stage IVA mycosis fungoides/Sezary syndrome (CTCL).

Conditions
COMPLETED
Opioid Titration Order Sheet or Standard Care in Treating Patients With Cancer Pain
Description

RATIONALE: An Opioid Titration Order Sheet that allows healthcare providers to adjust the dose and schedule of pain medication may help improve pain treatment for patients with cancer. It is not yet known whether the use of an Opioid Titration Order Sheet is more effective than standard care in treating pain caused by cancer. PURPOSE: This randomized phase III trial is studying an Opioid Titration Order Sheet to see how well it works compared with standard care in treating patients with cancer pain.

COMPLETED
Darbepoetin Alfa With or Without Iron in Treating Anemia Caused By Chemotherapy in Patients With Cancer
Description

RATIONALE: Darbepoetin alfa may cause the body to make more red blood cells. Red blood cells contain iron that is needed to carry oxygen to the tissues. It is not yet known whether giving darbepoetin alfa (DA) together with intravenous iron or oral iron is more effective than giving darbepoetin alfa together with a placebo in treating anemia caused by chemotherapy. PURPOSE: This randomized phase III trial is studying giving darbepoetin alfa together with iron to see how well it works compared with giving darbepoetin alfa together with a placebo in treating anemia caused by chemotherapy in patients with cancer.

COMPLETED
Sirolimus, Tacrolimus, and Antithymocyte Globulin in Preventing Graft-Versus-Host Disease in Patients Undergoing a Donor Stem Cell Transplant For Hematological Cancer
Description

RATIONALE: Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus, sirolimus, antithymocyte globulin, and methotrexate before and after transplant may stop this from happening. PURPOSE: This phase II trial is studying how well sirolimus, tacrolimus, and antithymocyte globulin work in preventing graft-versus-host disease in patients undergoing a donor stem cell transplant for hematological cancer .

COMPLETED
Cardiac Magnetic Resonance Imaging in Patients With Non-Hodgkin Lymphoma or Hodgkin Lymphoma Receiving Doxorubicin
Description

RATIONALE: Diagnostic procedures, such as cardiac magnetic resonance imaging, may help doctors detect early changes in the heart caused by chemotherapy. PURPOSE: This clinical trial is studying how well cardiac magnetic resonance imaging works in patients with newly diagnosed non-Hodgkin lymphoma or Hodgkin lymphoma receiving doxorubicin.

COMPLETED
Clinical Evaluations and Laboratory Studies to Study the Disease Course in Patients With Cutaneous T-Cell Lymphoma
Description

RATIONALE: Gathering information about patients with cutaneous T-cell lymphoma over time may help doctors learn more about the disease. PURPOSE: This natural history study is collecting disease-related health information over time from patients with cutaneous T-cell lymphoma.

Conditions
COMPLETED
Epoetin Alfa or Darbepoetin Alfa in Treating Patients With Anemia Caused by Chemotherapy
Description

RATIONALE: Epoetin alfa and darbepoetin alfa may cause the body to make more red blood cells. They are used to treat anemia caused by chemotherapy in patients with cancer. PURPOSE: This randomized clinical trial is studying four different schedules of epoetin alfa or darbepoetin alfa to compare how well they work in treating patients with anemia caused by chemotherapy.

COMPLETED
Music in Reducing Anxiety and Pain in Adult Patients Undergoing Bone Marrow Biopsy for Hematologic Cancers or Other Diseases
Description

RATIONALE: Listening to relaxing music during a bone marrow biopsy may be effective in reducing anxiety and pain. PURPOSE: This randomized clinical trial is studying how well music works in reducing anxiety and pain in adult patients undergoing bone marrow biopsy for hematologic cancers or other diseases.

TERMINATED
Gemcitabine and Pemetrexed Disodium in Treating Patients With Advanced Mycosis Fungoides or Sézary Syndrome
Description

RATIONALE: Drugs used in chemotherapy, such as gemcitabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Pemetrexed disodium may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving gemcitabine together with pemetrexed disodium may kill more cancer cells. PURPOSE: This was planned as a phase I/II trial studying the side effects and determining the best dose of gemcitabine hydrochloride when given together with pemetrexed disodium. Unfortunately, due to a lack of funding, the phase II portion was never conducted.

Conditions
COMPLETED
Liposomal Doxorubicin Followed By Bexarotene in Treating Patients With Cutaneous T-Cell Lymphoma
Description

RATIONALE: Drugs used in chemotherapy, such as liposomal doxorubicin and bexarotene, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Bexarotene may also cause cutaneous T-cell lymphoma cells to look more like normal cells, and to grow and spread more slowly. Giving liposomal doxorubicin followed by bexarotene may be an effective treatment for cutaneous T-cell lymphoma. PURPOSE: This phase II trial is studying how well giving liposomal doxorubicin followed by bexarotene works in treating patients with cutaneous T-cell lymphoma.

Conditions
COMPLETED
Bortezomib in Treating Patients With Relapsed or Refractory Cutaneous T-Cell Lymphoma
Description

RATIONALE: Bortezomib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase II trial is studying how well bortezomib works in treating patients with relapsed or refractory cutaneous T-cell lymphoma.

Conditions
COMPLETED
Photodynamic Therapy Using Silicon Phthalocyanine 4 in Treating Patients With Actinic Keratosis, Bowen's Disease, Skin Cancer, or Stage I or Stage II Mycosis Fungoides
Description

RATIONALE: Photodynamic therapy uses a drug that becomes active when it is exposed to a certain kind of light. When the drug is active, tumor cells are killed. Photodynamic therapy using silicon phthalocyanine 4 may be effective against skin cancer. PURPOSE: This phase I trial is studying the side effects and best dose of photodynamic therapy using silicon phthalocyanine 4 in treating participants with actinic keratosis, Bowen's disease, skin cancer, or stage I or stage II mycosis fungoides.

COMPLETED
Forodesine (BCX-1777) in Treating Patients With Refractory Stage IIA, Stage IIB, Stage III, Stage IVA, or Stage IVB Cutaneous T-Cell Lymphoma
Description

RATIONALE: Forodesine (BCX-1777) may stop the growth of cancer cells by blocking the enzymes necessary for their growth. PURPOSE: Phase I trial to study the effectiveness of BCX-1777 in treating patients who have refractory stage IIA, stage IIB, stage III, stage IVA, or stage IVB cutaneous T-cell lymphoma.

Conditions