64 Clinical Trials for Various Conditions
This phase II trial tests effects of nivolumab in combination with chemotherapy drugs prior to radiation therapy patients with nasopharyngeal carcinoma (NPC). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as gemcitabine and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. Researchers want to find out what effects, good and/or bad, adding nivolumab to chemotherapy has on patients with newly diagnosed NPC. In addition, they want to find out if children with NPC may be treated with less radiation therapy and whether this decreases the side effects of therapy.
This phase I trial studies the side effects of image-guided hyper-fractioned proton therapy in treating patients with head and neck cancer that has spread to nearby tissue or lymph nodes (locally advanced) and cannot be removed by surgery (unresectable). Radiation therapy uses high energy protons to kill tumor cells and shrink tumors. The change in dose radiation frequency and dose investigated in this study may help to better control the tumor and prevent it from coming back or growing. The goal of this study is to test a new radiation schedule that administers more radiation to the tumor tissue using image guided proton therapy for patients that have a high risk of having a tumor recurrence (the tumor comes back after treatment).
This randomized phase I trial studies how well olfactory training works in improving sense of smell after radiation therapy in patients with paranasal sinus or nasopharyngeal cancer. Olfactory training may improve smell function after radiation therapy in patients with paranasal sinus or nasopharyngeal cancer.
This trial uses blood tests and questionnaires to study how well participants with head and neck cancer that has spread to other places in the body adhere to swallowing exercises to prevent future disease. Using blood tests to study cytokines (proteins related to the immune system) may help doctors learn if certain levels of cytokines affect whether or not side effects occur and if they put participants at risk for future disease. Questionnaires may help doctors learn about the reasons head and neck cancer participants may or may not follow the swallowing exercises that they are asked to perform after receiving radiation treatments.
There are two study questions we are asking in this randomized phase II/III trial based on a blood biomarker, Epstein Barr virus (EBV) deoxyribonucleic acid (DNA) for locoregionally advanced non-metastatic nasopharyngeal cancer. All patients will first undergo standard concurrent chemotherapy and radiation therapy. When this standard treatment is completed, if there is no detectable EBV DNA in their plasma, then patients are randomized to either standard adjuvant cisplatin and fluorouracil chemotherapy or observation. If there is still detectable levels of plasma EBV DNA, patients will be randomized to standard cisplatin and fluorouracil chemotherapy versus gemcitabine and paclitaxel. Radiation therapy uses high energy x rays to kill tumor cells. Drugs used in chemotherapy, such as cisplatin, fluorouracil, gemcitabine hydrochloride, and paclitaxel work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether giving cisplatin and fluorouracil is more effective than gemcitabine hydrochloride and paclitaxel after radiation therapy in treating patients with nasopharyngeal cancer.
The main goal of this phase of the study is to determine if objectively assessed Physical Activity (PA) levels in advanced-cancer patients are associated with health care provider (HCP)-assessed ECOG performance status and overall survival. The purpose is to advance the evidence-base for incorporating objective assessment of Physical Activity (PA) in the context of performance status assessment in advanced cancer patients.
Patients have a type of cancer called nasopharyngeal cancer. This cancer has come back or not gone away or is at high risk for coming back after treatment (including the best treatment we know for nasopharyngeal cancer). We are asking patients to volunteer to be in a research study using special immune system cells called EBV-specific cytotoxic T lymphocytes, a new experimental therapy. Most patients with nasopharyngeal cancer show evidence of infection with the virus that causes infectious mononucleosis, Epstein Barr virus (EBV), before or at the time of their diagnosis of nasopharyngeal cancer. EBV is found in the cancer cells of most patients with nasopharyngeal cancer, suggesting that it may play a role in causing this cancer. The cancer cells infected by EBV are able to hide from the body's immune system and escape destruction. We want to see if special white blood cells (called T cells) that have been trained to kill EBV-infected cells can survive in the patient's blood and affect the tumor. We have treated other patients with different EBV positive cancers and have had variable results. Some patients have had some response to the treatment. Some patients have been cured by the treatment. It is not possible for us to predict if this treatment will work for nasopharyngeal cancer. The purposes of this study are to find the largest safe dose of EBV specific cytotoxic T cells, to learn what the side effects are, and to see whether this therapy might help patients with nasopharyngeal cancer.
RATIONALE: Iseganan hydrochloride may be effective in preventing or lessening oral mucositis in patients who are receiving radiation therapy for head and neck cancer. It is not yet known if iseganan hydrochloride is effective in preventing oral mucositis. PURPOSE: Randomized phase III trial to determine the effectiveness of iseganan hydrochloride in preventing oral mucositis in patients who are receiving radiation therapy for head and neck cancer.
RATIONALE: Fluorescent bronchoscopy, when used in combination with conventional white light bronchoscopy, may improve the ability to detect early lung cancer. PURPOSE: A pilot study to evaluate fluorescent light bronchoscopy plus conventional bronchoscopy as a tool for screening and detecting lung cancer in persons with completely resected head and neck cancer or successfully treated early-stage lung cancer.
RATIONALE: Sargramostim may lessen symptoms of mucositis in patients receiving radiation therapy for head and neck cancer. It is not yet known if sargramostim is more effective than no treatment in reducing mucositis caused by radiation therapy. PURPOSE: Randomized phase III trial to determine the effectiveness of sargramostim in decreasing mucositis in patients who are receiving radiation therapy for head and neck cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Combining radiation therapy with chemotherapy may kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of chemotherapy plus radiation therapy in treating patients with head and neck cancer.
This phase II trial studies how well nivolumab and chemoradiotherapy works in treating patients with stage II-IVB nasopharyngeal cancer. Monoclonal antibodies, such as nivolumab, may block tumor growth in different ways by targeting certain cells. Chemoradiotherapy is the combination of chemotherapy and radiation therapy and may prevent the cancer from spreading when combined with nivolumab. Giving nivolumab and chemoradiotherapy may work better in treating patients with stage II-IVB nasopharyngeal cancer.
This phase III trial is studying how well radiation therapy, amifostine, and chemotherapy work in treating young patients with newly diagnosed nasopharyngeal cancer. Radiation therapy uses high-energy x-rays to kill tumor cells. Drugs, such as amifostine, may protect normal cells from the side effects of radiation therapy. Drugs used in chemotherapy, such as cisplatin and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving radiation therapy together with amifostine and chemotherapy may kill more tumor cells.
This randomized pilot clinical trial studies whether acetylcysteine oral rinse will lessen saliva thickness and painful mouth sores in patients with head and neck cancer undergoing radiation therapy. Side effects from radiation therapy to the head and neck, such as thickened saliva and mouth sores, may interfere with activities of daily living such as eating and drinking, and may also cause treatment to be stopped or delayed. Acetylcysteine rinse may reduce saliva thickness and mouth sores, and improve quality of life in patients with head and neck cancer undergoing radiation therapy.
RATIONALE: Transoral robotic surgery (TORS) is a less invasive type of surgery for head and neck cancer and may have fewer side effects and improve recovery. PURPOSE: This clinical trial studies how transoral robotic surgery works in treating patients with benign or stage I-IV head and neck cancer.
This pilot clinical trial studies L-lysine in treating oral mucositis in patients undergoing radiation therapy with or without chemotherapy for head and neck cancer. L-lysine may lessen the severity of oral mucositis, or mouth sores in patients receiving radiation therapy with or without chemotherapy for head and neck cancer
This phase 2 trial is studying whether giving a combination of docetaxel, cisplatin, and fluorouracil chemotherapy followed by the combination of cisplatin with radiation therapy works in treating patients with advanced nasopharyngeal cancer. Drugs used in chemotherapy, such as docetaxel, cisplatin, and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill tumor cells. Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. Giving combination chemotherapy together with radiation therapy may kill more tumor cells.
RATIONALE: Diagnostic procedures, such as specialized types of magnetic resonance imaging (MRI), may help in planning radiation therapy that does less damage to normal tissues. PURPOSE: This phase I trial is studying using functional MRI to see how well it works in planning radiation therapy in patients undergoing radiation therapy to the base of the skull and/or brain for nonmetastatic head and neck cancer.
RATIONALE: Transoral robotic surgery may make it easier to find and remove benign or malignant tumors of the larynx and pharynx and cause less damage to normal tissue. It is not yet known whether transoral robotic surgery is more effective than standard surgery in diagnosing and treating larynx and pharynx tumors. PURPOSE: This phase I trial is studying how well transoral robotic surgery works compared with standard surgery in treating patients with benign or malignant tumors of the larynx or pharynx.
RATIONALE: Studying protein expression in sentinel lymph node tissue from patients with cancer in the laboratory may help doctors identify and learn more about biomarkers related to cancer. It may also help the study of cancer in the future. PURPOSE: This laboratory study is evaluating OX-40 protein expression in the sentinel lymph nodes of patients with cancer.
RATIONALE: Studying samples of blood, tissue, and saliva in the laboratory from patients with cancer and from healthy volunteers may help doctors identify and learn more about biomarkers related to cancer. PURPOSE: This laboratory study is looking at biomarkers in patients with head and neck cancer and in healthy volunteers.
RATIONALE: Collecting and storing samples of tissue, saliva, and blood from patients with cancer and from healthy participants to study in the laboratory may help the study of cancer in the future. PURPOSE: This research study is collecting and storing tissue samples from patients with head and neck cancer and from healthy participants.
RATIONALE: Collecting and storing samples of tissue, blood, and saliva from patients with cancer to study in the laboratory may help the study of cancer in the future. PURPOSE: This laboratory study is collecting and storing tissue samples from patients with head and neck cancer.
RATIONALE: Measuring levels of transforming growth factor-beta (TGF-beta) in the blood of patients with epithelial cancers (head and neck, lung, breast, colorectal, and prostate) may help doctors predict how patients will respond to treatment with radiation therapy. PURPOSE: This research study is measuring levels of TGF-beta in patients with epithelial cancers who are undergoing radiation therapy.
RATIONALE: Stereotactic radiosurgery may be able to send x-rays directly to the tumor and cause less damage to normal tissue. PURPOSE: This phase I trial is studying the side effects of stereotactic radiosurgery in treating patients with locally advanced or recurrent head and neck cancer.
RATIONALE: Developing a symptom checklist for late-effect lymphedema may help doctors learn more about lymphedema in patients with head and neck cancer and plan the best treatment. PURPOSE: This phase I/II trial is developing a checklist of lymphedema symptoms in patients with head and neck cancer.
RATIONALE: Early physical therapy may be effective in improving range of motion of the neck and shoulders in head and neck cancer survivors who are undergoing chemotherapy and radiation therapy. PURPOSE: This phase I trial is studying how well early physical therapy works in improving physical and functional well-being in head and neck cancer survivors receiving chemoradiotherapy.
RATIONALE: Learning about insomnia and quality of life in patients undergoing chemotherapy and radiation therapy for cancer may help doctors learn about the effects of treatment and plan the best treatment. PURPOSE: This clinical trial is studying insomnia in patients undergoing chemotherapy and radiation therapy for head and neck cancer.
RATIONALE: Studying gene mutations in samples of DNA from patients with head and neck cancer and a family history of cancer may help doctors learn more about the development of cancer in families. PURPOSE: This clinical trial is studying germline mutations in patients with head and neck cancer and a family history of cancer.
RATIONALE: Vaccines made from a person's dendritic cells mixed with peptides may help the body build an effective immune response to kill tumor cells. PURPOSE: This randomized phase I trial is studying the side effects of vaccine therapy in treating patients with head and neck cancer.