16 Clinical Trials for Various Conditions
This phase I trial studies the side effects and best dose of papaverine (PPV) when given together with radiation therapy (RT) and tests how well it works in treating patients with rectal cancer that has spread to nearby tissue or lymph nodes (locally advanced). PPV is an enzyme inhibitor, and it may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. RT uses high energy x-rays, particles, or radioactive seeds to kill tumor cells and shrink tumors. Giving PPV with RT may be safe, tolerable, and/or effective in treating patients with locally advanced rectal cancer.
This clinical trial develops and tests a mobile health (mHealth) intervention to improve adherence to lifestyle recommendations in colorectal cancer (CRC) survivors and their family caregivers. The current challenge for cancer survivorship is identifying novel approaches to help adhere to the lifestyle recommendations that have been shown to improve symptom burden, health outcomes, and health-related quality of life (HRQoL). The development of a digital health intervention specifically for CRC survivors and family caregivers may improve adherence to the American Cancer Society Nutrition and Physical Activity Guideline for Cancer Survivors and improve family health.
This phase II trial studies how well time-restricted eating works in reducing side effects of radiation or chemoradiation side effects when compared to nutritional counseling among patients with prostate, cervical, and rectal cancers. Time-restricted eating, also called short term fasting or intermittent fasting, is an eating plan that alternates between not eating food (fasting) and non-fasting periods. Nutritional counseling involves being asked to follow a healthy, balanced diet that includes instructions on what kinds of food are better tolerated during radiation and chemoradiation therapy. This trial may help researchers determine if certain diets may improve the anti-cancer effects of radiation therapy and reduce the side-effects of this treatment. If successful, these diets may be integrated into the future treatment of prostate, cervical, and rectal cancers.
This phase II trial compares the effect of irinotecan versus oxaliplatin after long-course chemoradiation in patients with stage II-III rectal cancer. Combination chemotherapy drugs, such as FOLFIRINOX (fluorouracil, irinotecan, leucovorin, and oxaliplatin), FOLFOX (leucovorin, fluorouracil, oxaliplatin, and irinotecan ), and CAPOX (capecitabin and oxaliplatin) work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. FOLFOX or CAPOX are used after chemoradiation as usual treatment for rectal cancer. Giving FOLFIRINOX after chemoradiation may increase the response rate and lead to higher rates of clinical complete response (with a chance of avoiding surgery) compared to FOLFOX or CAPOX after chemoradiation in patients with locally advanced rectal cancer.
This study measures the levels of circulating tumor DNA (ctDNA) in patients with stage II-III rectal cancer before, during, and after treatment to find out if the presence or absence of ctDNA in patient's blood using the Signatera test can be used to gauge how different treatments may affect rectal cancer. ctDNA is DNA from the rectal cancer that is circulating in the blood. The purpose of this study is to understand if the way rectal tumors respond to standard treatment can be associated with varying levels of ctDNA.
This phase II trial studies the side effects of chemotherapy and intensity modulated radiation therapy in treating patients with low-risk HIV-associated anal cancer, and nivolumab after standard of care chemotherapy and radiation therapy in treating patients with high-risk HIV-associated anal cancer. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Chemotherapy drugs, such as mitomycin, fluorouracil, and capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy with radiation therapy may kill more tumor cells. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving nivolumab after standard of care chemotherapy and radiation therapy may help reduce the risk of the tumor coming back.
This phase II trial investigates the effect of nivolumab and ipilimumab when given together with short-course radiation therapy in treating patients with rectal cancer that has spread to nearby tissue or lymph nodes (locally advanced). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving nivolumab, ipilimumab, and radiation therapy may kill more cancer cells.
This phase I trial investigates how well short-course radiation therapy followed by combination chemotherapy works in treating patients with stage II-III rectal cancer. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Chemotherapy drugs, such as leucovorin, fluorouracil, oxaliplatin, and capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving short-course radiation therapy and combination chemotherapy may reduce the need for surgery and therefore improve quality of life.
This phase I trial studies the side effects and best dose of ropidoxuridine and how well it works when added to the usual chemotherapy treatment (capecitabine) during radiation therapy for the treatment of patients with stage II-III rectal cancer. Ropidoxuridine may help radiation therapy work better by making cancer cells more sensitive to the radiation therapy. Chemotherapy drugs, such as capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. This study is being done to find out whether ropidoxuridine in addition to capecitabine and radiation therapy works better in treating patients with rectal cancer.
This pilot trial studies how well active surveillance and chemotherapy before surgery work in treating participants with stage II-III rectal cancer. Active surveillance involves monitoring participants for additional tumor growth after receiving cancer treatment. Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether deferring surgery after active surveillance and chemotherapy will work better in treating participants with stage II-III rectal cancer.
This research trial studies the financial burden in patients with stage I-III colon or rectal cancer who are undergoing treatment. Collecting data from patients about their cost and quality of life may help doctors to better understand the impact of cancer treatment on a patient?s employment and finances.
This study evaluates quality of life and utilities following surgical treatment of stage I-IV rectal cancer. This study may help researches learn more about quality of life in patients who have or have had rectal cancer.
This phase 1b trial studies the side effects and best dose of TAS-102 when given together with radiation therapy in treating patients with stage II-III rectal cancer that has not been treated and can be removed by surgery (resectable). Drugs used in chemotherapy, such as TAS-102, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. This study is being done to find out the safest dose of TAS-102 that can be used with radiation treatment for rectal cancer.
This phase Ib trial studies side effects and best dose of dasatinib in preventing oxaliplatin-induced peripheral neuropathy in patients with gastrointestinal cancers who are receiving FOLFOX regimen with or without bevacizumab. Drugs used in chemotherapy, such as leucovorin, fluorouracil, and oxaliplatin (FOLFOX regimen), work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. However, the buildup of oxaliplatin in the cranial nerves can result in damage or the nerves. Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Blocking these enzymes may reduce oxaliplatin-induced peripheral neuropathy.
This phase II trial tests whether nivolumab in combination with cabozantinib works in patients with mucosal melanoma. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It works by blocking the action of an abnormal protein that signals tumor cells to multiply. This helps stop the spread of tumor cells. Giving nivolumab in combination with cabozantinib could prevent cancer from returning.
This phase II, randomized pilot trial studies the effect of the consumption of foods made with resistant starch compared to foods made with corn starch on biomarkers that may be related to colorectal cancer progression in stage I-III colorectal cancer survivors. Foods made with resistant starch may beneficially influence markers of inflammation, insulin resistance, and the composition of gut bacteria in colorectal cancer survivors.