40 Clinical Trials for Various Conditions
This phase III trial studies using risk factors in determining treatment for children with favorable tissue (histology) Wilms tumors (FHWT). Wilms Tumor is the most common type of kidney cancer in children, and FHWT is the most common subtype. Previous large clinical trials have established treatment plans that are likely to cure most children with FHWT, however some children still have their cancer come back (called relapse) and not all survive. Previous research has identified features of FHWT that are associated with higher or lower risks of relapse. The term "risk" refers to the chance of the cancer coming back after treatment. Using results of tumor histology tests, biology tests, and response to therapy may be able to improve treatment for children with FHWT.
This phase II trial studies how well combination chemotherapy works in treating patients with newly diagnosed stage II-IV diffuse anaplastic Wilms tumors (DAWT) or favorable histology Wilms tumors (FHWT) that have come back (relapsed). Drugs used in chemotherapy regimens such as UH-3 (vincristine, doxorubicin, cyclophosphamide, carboplatin, etoposide, and irinotecan) and ICE/Cyclo/Topo (ifosfamide, carboplatin, etoposide, cyclophosphamide, and topotecan) work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial may help doctors find out what effects, good and/or bad, regimen UH-3 has on patients with newly diagnosed DAWT and standard risk relapsed FHWT (those treated with only 2 drugs for the initial WT) and regimen ICE/Cyclo/Topo has on patients with high and very high risk relapsed FHWT (those treated with 3 or more drugs for the initial WT).
This research study is studying biomarkers in tissue samples from patients with high-risk Wilms tumor. Studying samples of tissue from patients with cancer in the laboratory may help doctors to learn more about changes that occur in DNA and identify biomarkers related to cancer.
This laboratory study is using gene expression profiling to identify different categories of Wilms tumors. Studying the genes expressed in samples of tumor tissue from patients with cancer may help doctors identify biomarkers related to cancer.
This phase II trial is studying how well combination chemotherapy, radiation therapy, and/or surgery work in treating patients with high-risk kidney tumors. Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving combination chemotherapy together with radiation therapy before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed.
RATIONALE: Glutamic acid may help lessen or prevent nerve damage caused by vincristine. It is not yet known whether glutamic acid is more effective than a placebo in preventing nerve damage in patients receiving vincristine for Wilms' tumor, rhabdomyosarcoma, acute lymphoblastic leukemia, or non-Hodgkin's lymphoma. PURPOSE: This randomized phase III trial is studying glutamic acid to see how well it works compared to a placebo in reducing nerve damage caused by vincristine in young patients receiving vincristine for Wilms' tumor, rhabdomyosarcoma, acute lymphoblastic leukemia, or non-Hodgkin's lymphoma.
RATIONALE: Glutamine may help lessen neuropathy caused by chemotherapy. It is not yet known whether glutamine is more effective than a placebo in treating neuropathy caused by vincristine. PURPOSE: This randomized phase II trial is studying glutamine to see how well it works compared to a placebo in treating neuropathy caused by vincristine in young patients with lymphoma, leukemia, or solid tumors.
RATIONALE: Studying samples of blood from patients with cancer in the laboratory may help doctors learn more about changes that may occur in DNA and identify biomarkers related to cancer. PURPOSE: This laboratory study is looking at DNA variations in the RASSF1A gene in young patients with Wilms' tumor.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high energy x-rays to damage tumor cells. It is not yet known whether combination chemotherapy alone or combination chemotherapy plus radiation therapy is more effective for childhood kidney cancer. PURPOSE: Phase III trial to compare the effectiveness of combination chemotherapy with or without radiation therapy in treating children who have kidney cancer.
This clinical trial studies gene analysis in studying susceptibility to Wilms tumor. Finding genetic markers for Wilms tumor may help identify patients who are at risk of relapse.
This phase III trial studies how well combination chemotherapy and surgery work in treating young patients with Wilms tumor. Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) may kill more tumor cells. Giving combination chemotherapy before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed. Giving it after surgery may kill any tumor cells that remain after surgery.
This phase III trial is studying vincristine, dactinomycin, and doxorubicin with or without radiation therapy or observation only to see how well they work in treating patients undergoing surgery for newly diagnosed stage I, stage II, or stage III Wilms' tumor. Drugs used in chemotherapy, such as vincristine, dactinomycin, and doxorubicin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors.Giving these treatments after surgery may kill any tumor cells that remain after surgery. Sometimes, after surgery, the tumor may not need additional treatment until it progresses. In this case, observation may be sufficient.
RATIONALE: Lithium carbonate may be an effective treatment for intestinal graft-versus-host disease caused by a donor stem cell transplant. PURPOSE: This clinical trial is studying lithium carbonate in treating patients with acute intestinal graft-versus-host-disease after donor stem cell transplant.
RATIONALE: Cyproheptadine hydrochloride may prevent weight loss caused by cancer or cancer treatment. It is not yet known whether cyproheptadine is more effective than a placebo in preventing weight loss in young patients receiving chemotherapy for cancer. PURPOSE: This randomized phase III trial is studying cyproheptadine hydrochloride to see how well it works in preventing weight loss in young patients receiving chemotherapy for cancer.
RATIONALE: Antithymocyte globulin, clofarabine, and rituximab may stop the patient's immune system from rejecting the donor's stem cells when they do not exactly match the patient's blood. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving antithymocyte globulin before transplant and cyclosporine and mycophenolate mofetil before and after transplant may stop this from happening. PURPOSE: This phase II trial is studying how well giving antithymocyte globulin together with clofarabine and rituximab works in treating patients after an unsuccessful stem cell transplant.
RATIONALE: Vaccines may help the body build an effective immune response to kill cytomegalovirus infections. PURPOSE: This phase I trial is studying the side effects and best dose of vaccine therapy in treating patients who have undergone a donor stem cell transplant and have cytomegalovirus infection that has not responded to therapy.
RATIONALE: Methotrexate and glucocorticoid therapy, such as prednisone or methylprednisolone, may be an effective treatment for acute graft-versus-host disease caused by a donor stem cell transplant. PURPOSE: This phase II trial is studying how well giving methotrexate together with glucocorticoids works in treating patients with newly diagnosed acute graft-versus-host disease after donor stem cell transplant.
RATIONALE: Voriconazole may be effective in preventing systemic fungal infections following chemotherapy. PURPOSE: Phase II trial to study the effectiveness of voriconazole in preventing systemic fungal infections in children who have neutropenia after receiving chemotherapy for leukemia, lymphoma, or aplastic anemia or in preparation for bone marrow or stem cell transplantation.
RATIONALE: Antivirals such as valacyclovir act against viruses and may be effective in preventing cytomegalovirus. It is not yet known if valacyclovir is effective in preventing cytomegalovirus in patients undergoing stem cell transplantation. PURPOSE: Randomized phase III trial to determine the effectiveness of valacyclovir in preventing cytomegalovirus in patients who are undergoing donor stem cell transplantation.
RATIONALE: Antivirals such as ribavirin are used to treat infections caused by viruses. It is not yet known if ribavirin is more effective with or without monoclonal antibody therapy in treating patients who develop RSV pneumonia following peripheral stem cell transplantation. PURPOSE: Randomized phase III trial to compare the effectiveness of ribavirin with or without monoclonal antibody in treating patients who develop RSV pneumonia following peripheral stem cell transplantation.
RATIONALE: Beclomethasone may be an effective treatment for graft-versus-host disease. PURPOSE: Phase I/II trial to study the effectiveness of beclomethasone in treating patients who have graft-versus-host disease of the esophagus, stomach, small intestine, or colon.
RATIONALE: Caspofungin acetate or amphotericin B liposomal may be effective in preventing or controlling fever and neutropenia caused by chemotherapy, bone marrow transplantation, or peripheral stem cell transplantation. It is not yet known whether caspofungin acetate or amphotericin B liposomal is more effective for treating these side effects. PURPOSE: Randomized phase III trial to compare the effectiveness of caspofungin acetate with that of amphotericin B liposomal in treating patients who have persistent fever and neutropenia after receiving anticancer therapy.
RATIONALE: Captopril may protect the lungs from the side effects of bone marrow or stem cell transplantation. PURPOSE: Randomized phase III trial to determine the effectiveness of captopril to lessen the side effects in patients who are undergoing bone marrow or stem cell transplantation following chemotherapy and radiation therapy.
RATIONALE: Interleukin-11 and filgrastim stimulate the production of blood cells. Giving these drugs to stimulate peripheral stem cells that can be collected for peripheral stem cell transplantation may result in fewer side effects after transplant. PURPOSE: Phase II trial to study the effectiveness of interleukin-11 plus filgrastim prior to peripheral stem cell transplantation in patients who have non-Hodgkin's lymphoma, Hodgkin's disease, breast cancer, or other solid tumors.
RATIONALE: White blood cells from donors may be able to kill cancer cells in patients with cancer that has recurred following bone marrow or peripheral stem cell transplantation. PURPOSE: Phase II trial to study the effectiveness of donated white blood cells in treating patients who have relapsed cancer following transplantation of donated bone marrow or peripheral stem cells.
RATIONALE: Giving itraconazole or fluconazole may be effective in preventing infections in patients undergoing peripheral stem cell or bone marrow transplantation. It is not yet known whether itraconazole is more effective than fluconazole for preventing infections. PURPOSE: Randomized phase III trial to compare the effectiveness of itraconazole with fluconazole to prevent infections in patients undergoing peripheral stem cell or bone marrow transplantation.
RATIONALE: Bone marrow transplantation may be able to replace immune cells that were destroyed by chemotherapy or radiation therapy used to kill tumor cells. Sometimes the transplanted cells can make an immune response against the body's normal tissues. Stem cells that have been treated in the laboratory to remove lymphocytes may prevent this from happening. PURPOSE: Clinical trial to prevent graft-versus-host disease in patients undergoing bone marrow transplantation.
RATIONALE: Biological therapies use different ways to stimulate the immune system and stop cancer cells from growing. Combining chemotherapy and peripheral stem cell transplantation with biological therapy may kill more cancer cells. PURPOSE: Phase II trial to study the effectiveness of biological therapy with sargramostim, interleukin-2, and interferon alfa following chemotherapy and peripheral stem cell transplantation in treating patients who have cancer.
RATIONALE: Interleukin-12 may kill tumor cells by stopping blood flow to the tumor and by stimulating a person's white blood cells to kill cancer cells. PURPOSE: Phase I trial to study the effectiveness of interleukin-12 in treating patients who have hematologic cancer or solid tumor.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase I/II trial to study the effectiveness of oblimersen in treating patients who have solid tumors that have not responded to previous therapy.