23 Clinical Trials for Various Conditions
This phase I trial studies the side effects and best dose of ganetespib when given together with paclitaxel, carboplatin, and radiation therapy in treating patients with stage II-III esophageal cancer. Ganetespib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as paclitaxel and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high-energy x-rays to kill tumor cells and shrink tumors. Giving ganetespib in combination with paclitaxel, carboplatin, and radiation therapy may be a better treatment for patients with esophageal cancer.
This phase I trial studies the side effects and best dose of ropidoxuridine in treating patients with gastrointestinal cancer that has spread to other places in the body and usually cannot be cured or controlled with treatment undergoing radiation therapy. Ropidoxuridine may help radiation therapy work better by making tumor cells more sensitive to the radiation therapy.
This phase II trial is studying how well giving panitumumab, combination chemotherapy, and radiation therapy together before surgery works in treating patients with advanced esophageal or gastroesophageal (GE) junction cancer. Monoclonal antibodies, such as panitumumab, may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as oxaliplatin, leucovorin calcium, and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill tumor cells. Giving monoclonal antibody therapy together with chemotherapy and radiation therapy before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed.
This pilot phase II trial studies how well giving bevacizumab and combination chemotherapy together before surgery works in treating patients with locally advanced esophageal or stomach cancer. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Drugs used in chemotherapy, such as leucovorin calcium, fluorouracil, and oxaliplatin work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving bevacizumab and combination chemotherapy before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed. Giving these treatments after surgery may kill any tumor cells that remain after surgery.
This randomized phase III trial studies how well radiation therapy, paclitaxel, and carboplatin with or without trastuzumab work in treating patients with esophageal cancer. Radiation therapy uses high-energy x-rays to kill tumor cells. Drugs used in chemotherapy, such as paclitaxel and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as trastuzumab, may interfere with the ability of tumor cells to grow and spread. It is not yet known whether giving radiation therapy and combination chemotherapy together with or without trastuzumab is more effective in treating esophageal cancer.
RATIONALE: PET scans done during chemotherapy may help doctors assess a patient's response to treatment and help plan the best treatment. PURPOSE: This randomized phase II trial is studying PET scan imaging in assessing response in patients with esophageal cancer receiving combination chemotherapy.
RATIONALE: Drugs used in chemotherapy, such as paclitaxel and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill tumor cells. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Cetuximab may stop the growth of esophageal cancer by blocking blood flow to the tumor. It is not yet known whether giving paclitaxel and cisplatin together with radiation therapy is more effective with or without cetuximab in treating esophageal cancer. PURPOSE: This randomized phase III trial is comparing how well giving paclitaxel and cisplatin together with radiation therapy works with or without cetuximab in treating patients with locally advanced esophageal cancer.
This phase II trial tests how well itraconazole works in combination with standard of care endoscopy with ablation for the prevention of esophageal cancer in patients with high-risk Barrett's esophagus (BE). BE is a condition in which the lining of the esophagus changes. The tissue that lines the esophagus becomes more like the tissue that lines the intestine. People with Barrett's esophagus have a higher risk of developing esophageal cancer. Itraconazole is a drug used to prevent or treat fungal infections. It belongs to the family of drugs called antifungal agents. Ablation refers to the removal of abnormal tissue using heat. Endoscopy is a procedure for looking at the esophagus using a long, flexible tube called an endoscope, which has a video camera at the end. Radiofrequency ablation is a type of heat therapy that uses radiofrequency energy (similar to microwave heat) to destroy the abnormal tissue in the esophagus. Giving itraconazole in combination with standard of care endoscopy with ablation may improve the effects of ablation and prevent esophageal cancer in patients with high-risk Barrett's esophagus.
The purpose of this Phase I study is to determine the recommended phase 2 dose (RP2D) and safety profile of NBTXR3 activated by radiation therapy with concurrent chemotherapy for the treatment of patients with esophageal adenocarcinoma. NBTXR3 is a drug that when activated by radiation therapy, may cause targeted destruction of cancer cells. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Chemotherapy drugs, such as oxaliplatin, fluorouracil, capecitabine, docetaxel, paclitaxel, and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving NBTXR3 activated by radiation therapy with concurrent chemotherapy may help control the disease.
This trial tests new methods and materials for the real-time chemotherapy-associated side effects monitoring support system (RT-CAMSS) in patients with gastrointestinal cancers undergoing chemotherapy. RT-CAMSS is a monitoring support system that provides patients with evidence-based information and side-effect management and coping skills, emotional support and validation, and proactive care via text messages and questionnaires as they undergo chemotherapy.
This phase I trial studies the side effects of OBP-301 when given together with carboplatin, paclitaxel, and radiation therapy in treating patients with esophageal or gastroesophageal cancer that invades local or regional structures. OBP-301 is a virus that has been designed to infect and destroy tumor cells (although there is a small risk that it can also infect normal cells). Chemotherapy drugs, such as carboplatin and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving OBP-301 with chemotherapy and radiation therapy may work better than standard chemotherapy and radiation therapy in treating patients with esophageal or gastroesophageal cancer.
This trial studies how well dyadic yoga intervention works in improving physical performance and quality of life in patients with stage I-IV non-small cell lung or esophageal cancer undergoing radiotherapy and their caregivers. Dyadic yoga intervention may help to improve physical function, fatigue, sleep difficulties, depressive symptoms, and overall quality of life for patients with non-small cell lung cancer and/or their caregivers.
This trial studies how well proton beam radiation therapy compared with intensity modulated photon radiotherapy works in treating patients with stage I-IVA esophageal cancer. Proton beam radiation therapy uses a beam of protons (rather than x-rays) to send radiation inside the body to the tumor without damaging much of the healthy tissue around it. Intensity modulated photon radiotherapy uses high-energy x-rays to deliver radiation directly to the tumor without damaging much of the healthy tissue around it. It is not yet known whether proton beam therapy or intensity modulated photon radiotherapy will work better in treating patients with esophageal cancer.
This phase IB/II trial studies the side effects of taladegib, paclitaxel, carboplatin, and external beam radiation therapy and to see how well they work in treating patients with esophageal or gastroesophageal junction cancer found only in the tissue or organ where it began, and has not spread to nearby lymph nodes or to other parts of the body (localized). Taladegib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as paclitaxel and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving taladegib, paclitaxel, carboplatin, and radiation therapy may kill more tumor cells.
This randomized pilot phase II trial studies how well molecular phenotyping works in predicting response in patients with stage IB-III esophageal cancer who are receiving carboplatin and paclitaxel or oxaliplatin, leucovorin calcium, and fluorouracil. Studying the genes in a patients tumor cells before and after chemotherapy may help in understanding if there are specific features of the tumor cells that make a person more or less likely to respond to treatment and how these features may be affected by treatment.
This study examines at-home monitoring of patient-generated phsyiologic health data and patient-reported outcomes. Patient-generated health data using at-home monitoring devices and smart device applications are used more and more to measure value and quality in cancer care. This trial may show whether at-home monitoring programs can improve the care of patients after hospital discharge from surgery.
This trial studies cardiac changes after radiation or chemo-radiation for the treatment of lung or esophageal cancer that has not spread to other places in the body (non-metastatic) or has not come back (non-recurrent). Continuous cardiac monitoring with an implanted device may help to identify cardiac changes that would remain unnoticed, and facilitate the treatment of these early cardiac changes as part of standard care.
This randomized pilot clinical trial studies health care coach support in reducing acute care use and cost in patients with cancer. Health care coach support may help cancer patients to make decisions about their care that matches what is important to them with symptom management.
This randomized pilot trial studies how well two supportive programs work for improving fatigue and depressive symptoms in patients with GI undergoing chemotherapy. Possible mediators such as psychological stress, circadian disruption, and inflammation, will also be explored.
This phase I trial studies the side effects and best schedule of vaccine therapy with or without sirolimus in treating patients with cancer-testis antigen (NY-ESO-1) expressing solid tumors. Biological therapies, such as sirolimus, may stimulate the immune system in different ways and stop tumor cells from growing. Vaccines made from a person's white blood cells mixed with tumor proteins may help the body build an effective immune response to kill tumor cells that express NY-ESO-1. Infusing the vaccine directly into a lymph node may cause a stronger immune response and kill more tumor cells. It is not yet known whether vaccine therapy works better when given with or without sirolimus in treating solid tumors.
This phase II trial studies the effect of chemoradiation and pembrolizumab followed by pembrolizumab and lenvatinib before surgery in treating patients with esophageal or esophageal/gastroesophageal junction cancer that has not spread to other places in the body (non-metastatic). Pembrolizumab is an immunotherapy drug that works by harnessing the immune system to attack cancer. Lenvatinib is an anti-cancer drug that works by stopping or slowing down the growth of cancer cells. Chemotherapy drugs, such as carboplatin and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving chemoradiation and pembrolizumab followed by pembrolizumab and lenvatinib before surgery may kill more tumor cells.
This phase IIA trial investigates the side effects of Ad5.F35-hGCC-PADRE vaccine and to see how well it works in treating patients with gastrointestinal adenocarcinoma. Ad5.F35-hGCC-PADRE vaccine may help to train the patient's own immune system to identify and kill tumor cells and prevent it from coming back.
RATIONALE: Studying protein expression in sentinel lymph node tissue from patients with cancer in the laboratory may help doctors identify and learn more about biomarkers related to cancer. It may also help the study of cancer in the future. PURPOSE: This laboratory study is evaluating OX-40 protein expression in the sentinel lymph nodes of patients with cancer.