193 Clinical Trials for Various Conditions
This phase I clinical trial is studying the side effects and best dose of RO4929097 when given together with capecitabine in treating patients with refractory solid tumors. RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving RO4929097 together with chemotherapy may kill more tumor cells.
RATIONALE: AR-42 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I trial is studying the side effects and best dose of AR-42 in treating patients with advanced or relapsed multiple myeloma, chronic lymphocytic leukemia, or lymphoma.
Drugs used in chemotherapy, such as FAU, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. This phase I trial is studying the side effects and best dose of FAU in treating patients with advanced solid tumors or lymphoma.
This phase I trial studies the side effects and best dose of dasatinib in treating patients with solid tumors or lymphomas that are metastatic or cannot be removed by surgery. Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase I trial is studying the side effects and best dose of vorinostat in treating patients with metastatic or unresectable solid tumors or lymphoma and liver dysfunction. (closed for accrual as of 04/05/2010) Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Vorinostat may have different effects in patients who have changes in their liver function.
This phase I trial is studying the side effects and best dose of giving PDX101 together with 17-AAG in treating patients with metastatic or unresectable solid tumors or lymphoma. PDX101 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Drugs used in chemotherapy, such as 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving PXD101 together with 17-AAG may kill more cancer cells.
This phase I trial is studying the side effects and best dose of PXD101 and bortezomib in treating patients with advanced solid tumors or lymphomas. PXD101 and bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PXD101 may also cause cancer cells to look more like normal cells, and to grow and spread more slowly. Giving PXD101 together with bortezomib may kill more cancer cells.
This phase I trial is studying the best dose of 3-AP and the side effects of giving 3-AP together with gemcitabine in treating patients with advanced solid tumors or lymphoma. Drugs used in chemotherapy, such as 3-AP and gemcitabine (GEM), work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. 3-AP may help gemcitabine kill more cancer cells by making the cells more sensitive to the drug. 3-AP may also stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase I trial is studying the side effects and best dose of giving tanespimycin together with bortezomib in treating patients with advanced solid tumors or lymphomas. (Accrual for lymphoma patients closed as of 11/27/09) Drugs used in chemotherapy, such as tanespimycin, work in different ways to stop cancer cells from dividing so they stop growing or die. Bortezomib may stop the growth of cancer cells by blocking the enzymes necessary for their growth. It may also increase the effectiveness of tanespimycin by making cancer cells more sensitive to the drug. Combining tanespimycin with bortezomib may kill more cancer cells.
This phase I trial is studying the side effects and best dose of 17-DMAG in treating patients with metastatic or unresectable solid tumors or lymphomas. Drugs used in chemotherapy, such as 17-DMAG, work in different ways to stop cancer cells from dividing so they stop growing or die
This phase II trial studies how well giving fludarabine phosphate, cyclophosphamide, tacrolimus, mycophenolate mofetil and total-body irradiation together with a donor bone marrow transplant works in treating patients with high-risk hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate and cyclophosphamide, and total-body irradiation before a donor bone marrow transplant helps stop the growth of cancer cells by stopping them from dividing or killing them. Giving cyclophosphamide after transplant may also stop the patient's immune system from rejecting the donor's bone marrow stem cells. The donated stem cells may replace the patient's immune system cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and mycophenolate mofetil after the transplant may stop this from happening
Phase I trial to study genetic testing and the effectiveness of irinotecan in treating patients who have solid tumors and lymphoma. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Genetic testing for a specific enzyme may help doctors determine whether side effects from or response to chemotherapy are related to a person's genetic makeup
RATIONALE: Gathering information about older patients with cancer may help the study of cancer in the future. PURPOSE: This research study is gathering information from older patients with cancer into a registry.
RATIONALE: Collecting and storing samples of tissue, blood, and body fluid from patients with cancer to study in the laboratory may help the study of cancer in the future. PURPOSE: This research study is collecting and storing blood and tissue samples from patients being evaluated for hematologic cancer.
This Phase II clinical trial was designed for patients with hematologic malignancies in need of donor peripheral blood stem cell transplant, and have no HLA matched donor. Therefore It will test the efficacy of combining sirolimus, tacrolimus, antithymocyte globulin, and rituximab in preventing graft versus host disease in transplants from HLA Haploidentical and partially mismatched donors.
RATIONALE: Collecting information about the effect of hematologic cancer and its treatment on quality of life may help doctors learn more about the disease and plan the best treatment. PURPOSE: This phase I trial is studying quality of life in younger leukemia and lymphoma survivors.
RATIONALE: The influenza vaccine may help prevent flu in patients who have undergone stem cell transplant. PURPOSE: This clinical trial is studying how well the influenza vaccine works in preventing flu in patients who have undergone stem cell transplant and in healthy volunteers.
RATIONALE: Diagnostic procedures, such as 3'-deoxy-3'-\[18F\] fluorothymidine (FLT) PET imaging, may help find and diagnose cancer. It may also help doctors predict a patient's response to treatment and help plan the best treatment. PURPOSE: This phase I trial is studying FLT PET imaging in patients with cancer.
RATIONALE: Studying blood samples from cancer patients undergoing pain treatment in the laboratory may help doctors learn more about how pain drugs work in the body. It may also help doctors predict how patients will respond to treatment. PURPOSE: This research study is looking at fentanyl in patients with cancer.
RATIONALE: Studying samples of blood and tissue in the laboratory from patients with cancer and from healthy participants may help doctors learn more about cancer. PURPOSE: This laboratory study is looking at an assay in determining cancer resistance in patients with metastatic cancer and in healthy participants.
RATIONALE: Measuring the number of radiolabeled white blood cells in non-Hodgkin's lymphoma tumors may help doctors predict how well patients will respond to treatment, and may help the study of cancer in the future. PURPOSE: This study is measuring radiolabeled white blood cells in patients with non-Hodgkin's lymphoma.
RATIONALE: Collecting and storing samples of blood and bone marrow from patients with cancer to study in the laboratory may help doctors learn more about diagnosing cancer and determine a patient's eligibility for a treatment clinical trial. It may also help the study of cancer in the future. PURPOSE: This laboratory study is collecting tissue samples from patients with leukemia or other blood disorders who are planning to enroll in an ECOG leukemia treatment clinical trial.
RATIONALE: Human T-cell lymphotropic virus type 1 (HTLV-1) can cause cancer. Zidovudine is an antiviral drug that acts against the human T-cell lymphotropic virus type 1. Giving zidovudine, interferon alfa-2b, and PEG-interferon alfa-2b together may stimulate the immune system and slow down or keep the cancer cell from growing. PURPOSE: This clinical trial is studying how well giving zidovudine together with interferon alfa-2b and PEG-interferon alfa-2b works in treating patients with human T-cell lymphotropic virus type 1-associated adult T-cell leukemia/lymphoma.
RATIONALE: Giving low doses of chemotherapy before a donor stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving a monoclonal antibody, such as alemtuzumab, before transplant and tacrolimus and methotrexate after transplant may stop this from happening. PURPOSE: This phase II trial is studying the side effects of donor stem cell transplant and to see how well it works in treating patients with high-risk hematologic cancer.
RATIONALE: Giving total marrow and total lymph node irradiation together with low doses of chemotherapy before a donor stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). PURPOSE: This phase I trial is studying the side effects and best dose of total marrow and total lymph node irradiation when given together with fludarabine and melphalan followed by donor stem cell transplant in treating patients with advanced hematological cancer that has not responded to treatment.
RATIONALE: Vandetanib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as bevacizumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Bevacizumab and vandetanib may also stop the growth of cancer cells by blocking blood flow to the cancer. Giving vandetanib together with bevacizumab may kill more cancer cells. PURPOSE: This phase I trial is studying the side effects and best dose of vandetanib and bevacizumab in treating patients with advanced solid tumors or lymphoma.
RATIONALE: Methadone, morphine, or oxycodone may help relieve pain caused by cancer. It is not yet known whether methadone is more effective than morphine or oxycodone in treating pain in patients with cancer. PURPOSE: This randomized clinical trial is studying methadone to see how well it works compared with morphine or oxycodone in treating pain in patients with cancer.
RATIONALE: An Opioid Titration Order Sheet that allows healthcare providers to adjust the dose and schedule of pain medication may help improve pain treatment for patients with cancer. It is not yet known whether the use of an Opioid Titration Order Sheet is more effective than standard care in treating pain caused by cancer. PURPOSE: This randomized phase III trial is studying an Opioid Titration Order Sheet to see how well it works compared with standard care in treating patients with cancer pain.
RATIONALE: Darbepoetin alfa may cause the body to make more red blood cells. Red blood cells contain iron that is needed to carry oxygen to the tissues. It is not yet known whether giving darbepoetin alfa (DA) together with intravenous iron or oral iron is more effective than giving darbepoetin alfa together with a placebo in treating anemia caused by chemotherapy. PURPOSE: This randomized phase III trial is studying giving darbepoetin alfa together with iron to see how well it works compared with giving darbepoetin alfa together with a placebo in treating anemia caused by chemotherapy in patients with cancer.
RATIONALE: KX2-391 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I trial is studying the side effects and best dose of KX2-391 in treating patients with advanced solid tumors or lymphoma that did not respond to treatment.