211 Clinical Trials for Various Conditions
The purpose of this study is to determine whether it is feasible to give a combination of Metformin and omega-3 fatty acids for one year to women with a history of early stage breast cancer. We will also evaluate whether the metformin and omega-3 fatty acids combination causes changes in breast tissue, blood, and mammograms.
RATIONALE: Gathering information about how patients respond to stress and measuring stress levels in women with newly diagnosed breast cancer may help doctors provide better methods of treatment and on-going care. PURPOSE: This research study is measuring stress in women with newly diagnosed stage I, stage II, or stage III breast cancer or ductal carcinoma in situ of the breast.
RATIONALE: Collecting and storing samples of blood from patients with cancer to study in the laboratory may help doctors learn more about changes that may occur in DNA and identify biomarkers related to cancer. PURPOSE: This laboratory study is looking at the effects of surgery, radiation therapy, chemotherapy, and hormone therapy on biomarkers in women with stage I, stage II, stage III breast cancer, or ductal carcinoma in situ that can be removed by surgery.
This phase II trial tests whether panitumumab and pembrolizumab in combination with standard of care chemotherapy before surgery (neoadjuvant) works to shrink tumors in patients with stage III-IV triple negative breast cancer. Panitumumab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as paclitaxel, carboplatin, doxorubicin, and cyclophosphamide work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving panitumumab and pembrolizumab in combination with neoadjuvant chemotherapy may kill more tumor cells in patients with triple negative breast cancer.
This phase I trial studies the safety of personalized neo-antigen peptide vaccine in treating patients with stage IIIC-IV melanoma, hormone receptor positive HER2 negative breast cancer that has spread from where it first started (primary site) to other places in the body (metastatic) or does not respond to treatment (refractory) or stage III-IV non-small cell lung cancer. Personalized neo-antigen peptide vaccine is a product that combines multiple patient specific neo-antigens. Given personalized neo-antigen peptide vaccine together with Th1 polarizing adjuvant poly ICLC may induce a polyclonal, poly-epitope, cytolytic T cell immunity against the patient's tumor.
This phase I trial studies the side effects and best dose of multiantigen deoxyribonucleic acid (DNA) plasmid-based vaccine in treating patients with human epidermal growth factor receptor 2 (HER2)-negative stage III-IV breast cancer. Multiantigen DNA plasmid-based vaccine may target immunogenic proteins expressed in breast cancer stem cells which are the component of breast cancer that is resistant to chemotherapy and has the ability to spread. Vaccines made from DNA may help the body build an effective immune response to kill tumor cells.
This phase II trial is studies how well Akt inhibitor MK2206 works in treating patients with stage I-III breast cancer that can be removed by surgery. Akt inhibitor MK2206 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase I trial studies the side effects and the best dose of gamma-secretase inhibitor RO4929097 when given together with paclitaxel and carboplatin in patients with stage II or stage III triple-negative breast cancer. Gamma-secretase inhibitor RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs use in chemotherapy, such as paclitaxel and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving gamma-secretase inhibitor RO4929097 together with paclitaxel and carboplatin before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed.
This phase II trial studies how well veliparib with or without carboplatin works in treating patients with stage III or IV breast cancer. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether veliparib is more effective with or without carboplatin in treating breast cancer.
RATIONALE: Studying quality-of-life in patients having cancer treatment may identify the intermediate- and long-term effects of treatment on patients with cancer PURPOSE: This randomized clinical trial is studying how well an educational intervention works in supporting Hispanic women with stage I, stage II, or stage III breast cancer and their families or caregivers.
RATIONALE: New surgery techniques may lessen pain after breast surgery. It is not yet known whether tumescent mastectomy or standard mastectomy results in less pain in women with breast cancer. PURPOSE: This clinical trial is studying pain after tumescent mastectomy compared with pain after standard mastectomy in women with stage I, stage II, or stage III breast cancer.
This randomized phase III trial studies paclitaxel and trastuzumab with or without lapatinib to see how well they work in treating patients with stage II or stage III breast cancer that can be removed by surgery. Drugs used in chemotherapy, such as paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as trastuzumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Lapatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving paclitaxel with trastuzumab and/or lapatinib before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed. It is not yet known which regimen is more effective in treating patients with breast cancer.
This randomized phase III trial studies fulvestrant and lapatinib to see how well they work compared to fulvestrant and a placebo in treating postmenopausal women with stage III or stage IV breast cancer that is hormone receptor-positive. Estrogen can cause the growth of breast cancer cells. Hormone therapy using fulvestrant may fight breast cancer by lowering the amount of estrogen the body makes. Lapatinib may stop the growth of breast cancer cells by blocking some of the enzymes needed for cell growth. It is not yet known whether fulvestrant is more effective with or without lapatinib in treating breast cancer.
RATIONALE: Vaccines made from peptides may help the body build an effective immune response to kill tumor cells. Giving booster vaccinations may make a stronger immune response and kill more tumor cells. PURPOSE: This phase I trial is studying the side effects of vaccine therapy in treating patients with stage III or stage IV breast cancer.
RATIONALE: Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells. Monoclonal antibodies, such as trastuzumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Giving combination chemotherapy with or without trastuzumab before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed. It is not yet known whether combination chemotherapy is more effective with or without trastuzumab in treating breast cancer. PURPOSE: This randomized phase II trial is comparing two different regimens of combination chemotherapy given together with or without trastuzumab to see how well they work in treating patients with stage II or stage III breast cancer.
RATIONALE: Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as trastuzumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. An autologous stem cell transplant may be able to replace blood-forming cells that were destroyed by chemotherapy. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving combination chemotherapy with or without trastuzumab followed by an autologous stem cell transplant and radiation therapy may kill more tumor cells. PURPOSE: This phase II trial is studying how well giving combination chemotherapy with or without trastuzumab followed by an autologous stem cell transplant and radiation therapy works in treating patients with stage III or stage IV breast cancer.
The objective of this study to evaluate the safety, tolerability, pharmacokinetics, and efficacy of BL-M17D1 in patients with HER2-Expressing or HER2-Mutant Advanced or Metastatic Solid Tumors.
This phase II trial tests the how well a precision medicine approach (serial measurements of molecular and architectural response to therapy \[SMMART\])-adaptive clinical treatment \[ACT\]) works in treating patients with sarcoma, prostate, breast, ovarian or pancreatic cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). SMMART testing uses genetic and protein tests to learn how cancer changes and to understand what drugs may work against a person's cancer or why drugs stop working. These test results are reviewed by a group of physicians and scientists during a SMMART tumor board who then recommend precision therapy.
This phase I/Ib trial tests the safety, side effects, best dose, and effectiveness of ASTX660 (tolinapant) in combination with eribulin mesylate (eribulin) in treating patients with triple negative breast cancer that cannot be removed by surgery (unresectable) or that has spread to nearby tissues or lymph nodes (locally advanced) or to other places in the body (metastatic). Tolinapant may stop the growth of tumor cells by blocking proteins, such as XIAP and cIAP1, needed for tumor cell survival. Chemotherapy drugs, such as eribulin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving tolinapant in combination with eribulin may be safe, tolerable, and/or effective in treating patients with unresectable, locally advanced, or metastatic triple negative breast cancer.
This phase II trial tests how well tamoxifen and pegylated liposomal doxorubicin works in treating patients with triple negative breast cancer that has spread from where it first started (primary site) to other places in the body (metastatic) or that has spread to nearby tissue or lymph nodes (locally advanced) and is unable to be operated on (inoperable). Tamoxifen works by blocking the effects of estrogen in the breast. This may help stop the growth of tumor cells that need estrogen to grow. Doxorubicin is in a class of medications called anthracyclines. Doxorubicin damages the cell's DNA and may kill cancer cells. It also blocks a certain enzyme needed for cell division and DNA repair. Liposomal doxorubicin is a form of the anticancer drug doxorubicin that is contained inside very tiny, fat-like particles. Liposomal doxorubicin may have fewer side effects and work better than other forms of the drug. Giving tamoxifen and pegylated liposomal doxorubicin together may work better in treating patients with metastatic or inoperable, locally advanced triple negative breast cancer than giving either of these drugs alone.
This study is being done to collect tissue samples to test how accurately a tumor response platform, Elephas, can predict clinical response across multiple types of immunotherapies, chemoimmunotherapy and tumor types.
This phase II trial tests the accuracy of functional imaging (FFNP)-positron emission tomography (PET)/computed tomography (CT) to predict response to abemaciclib plus endocrine therapy. Abemaciclib is a drug used to treat certain types of hormone receptor positive (HR+), HER2 negative breast cancer. Abemaciclib blocks certain proteins, which may help keep tumor cells from growing. Endocrine therapy adds, blocks, or removes hormones that can cause cancer to grow. FFNP PET imaging is a form of x-ray that uses FFNP as an imaging agent that may provide more precise information about the location of tumors that "light up" with FFNP than a PET scan alone can provide.
This phase I clinical trial tests the immune effects of fermented wheat germ in patients with advanced solid tumor cancers who are being treated with standard of care checkpoint inhibitors. Fermented wheat germ is a nutritional supplement that some claim is a "dietary food for special medical purposes for cancer patients" to support them in treatment. There have also been claims that fermented wheat germ is "clinically proven" and "recognized by medical experts" to "enhance oncological treatment" and boost immune response to cancer; however, there are currently no documented therapeutic effects of fermented wheat germ as a nutritional supplement. Checkpoint inhibitors, given as part of standard of care for advanced solid tumors, are a type of immunotherapy that may help the body's immune system attack the cancer and may interfere with the ability of tumor cells to grow and spread. The information gained from this trial may allow researchers to determine if there is any value of giving fermented wheat germ with standard of care checkpoint inhibitors for patients with advanced solid tumor malignancies.
This phase II trial tests how well propranolol and pembrolizumab work to cause tumor re-sensitization and therefore treatment in patients with triple negative breast cancer that has not responded to previous checkpoint inhibitor therapy (refractory), cannot be removed by surgery (unresectable) or has spread from where it first started (primary site) to other places in the body (metastatic). Propranolol is a drug that is classified as a beta-blocker. Beta-blockers affect the heart and circulation. Beta-blockers, like propranolol, may help to counteract effects of certain stress hormones produced by the body during cancer treatment and may increase the effectiveness of the pembrolizumab. Pembrolizumab is a drug that is classified as an immune checkpoint inhibitor. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Propranolol may be able to re-sensitize the cells of the immune system to respond to the checkpoint inhibitor pembrolizumab in patients with checkpoint inhibitor refractory metastatic or unresectable triple negative breast cancer.
This phase I trial tests the safety, side effects, and best dose of ASTX727 when given in combination with a usual approach of treatment with paclitaxel and pembrolizumab in patients with triple-negative breast cancer that has spread from where it first started (primary site) to other places in the body (metastatic). The usual approach is defined as care most people get for this type of cancer. The usual approach for patients with metastatic triple negative breast cancer who are not in a study is chemotherapy with drugs like paclitaxel, carboplatin, cisplatin, eribulin, vinorelbine, capecitabine, gemcitabine, doxorubicin or cyclophosphamide. There is a protein called PD-L1 that helps regulate the body's immune system. For patients who have PD-L1+ tumors, immunotherapy (pembrolizumab) is usually added to paclitaxel or carboplatin/gemcitabine as initial treatment. For patients who have PD-L1-negative tumors, chemotherapy alone is used, without immunotherapy. ASTX727 is a combination of two drugs, decitabine and cedazuridine. Cedazuridine is in a class of medications called cytidine deaminase inhibitors. It prevents the breakdown of decitabine, making it more available in the body so that decitabine will have a greater effect. Decitabine is in a class of medications called hypomethylation agents. It works by helping the bone marrow produce normal blood cells and by killing abnormal cells in the bone marrow. Paclitaxel is in a class of medications called antimicrotubule agents. It stops tumor cells from growing and dividing and may kill them. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving ASTX727 with usual treatment approach with paclitaxel and pembrolizumab may be able to shrink or stabilize the tumor for longer than the usual approach alone in patients with metastatic triple negative breast cancer.
This phase I study assesses the safety, ultrasound visibility (conspicuity), and movement from normal position (migration) of the twinkling marker in patients with breast cancer that has spread to the axillary lymph nodes (locally advanced) who will be undergoing neoadjuvant systemic therapy and surgery. Biopsy markers are used to identify the sites of cancer involvement in both the breasts and lymph nodes. These biopsy markers are needed to help guide breast cancer surgery. Twinkling markers are designed to have the same size and shape of conventional biopsy markers, but are made of a radio-opaque material that assists with localization of the marker. The twinkling marker may make it more easily seen with ultrasound at the time of breast cancer surgery as compared to conventional biopsy markers.
This phase II trial tests the safety, side effects, and whether dendritic cell-based treatment and pembrolizumab work in treating patients with triple negative breast cancer that has spread to other places in the body (metastatic) or cannot be removed by surgery (unresectable). The term triple-negative breast cancer refers to the fact that the cancer cells don't have estrogen or progesterone receptors (ER or PR) and also don't make any or too much of the protein called HER2 (the cells test "negative" on all 3 tests). Dendritic cell-based treatment works by boosting the immune system (a system in our bodies that protects us against infection) to recognize and destroy the cancer cells. Pembrolizumab, is an immune checkpoint inhibitor drug, that works by targeting molecules that act as a check and balance system for immune responses. Immune checkpoint inhibitor drugs are designed to either "unleash" or "enhance" the cancer immune responses that already exist by either blocking inhibitory molecules or by activating stimulatory molecules. Giving dendritic cell-based therapy and pembrolizumab may decrease symptoms and improve quality of life in patients with triple negative breast cancer.
This phase Ib trial tests the safety and tolerability of ZEN003694 in combination with an immunotherapy drug called pembrolizumab and the usual chemotherapy approach with nab-paclitaxel for the treatment of patients with triple negative-negative breast cancer that has spread to other parts of the body (advanced). Paclitaxel is in a class of medications called antimicrotubule agents. It stops cancer cells from growing and dividing and may kill them. Nab-paclitaxel is an albumin-stabilized nanoparticle formulation of paclitaxel which may have fewer side effects and work better than other forms of paclitaxel. Immunotherapy with monoclonal antibodies, such as pembrolizumab may help the body's immune system attach the cancer and may interfere with the ability of tumor cells to grow and spread. ZEN003694 is an inhibitor of a family of proteins called the bromodomain and extra-terminal (BET). It may prevent the growth of tumor cells that over produce BET protein. Combination therapy with ZEN003694 pembrolizumab immunotherapy and nab-paclitaxel chemotherapy may help shrink or stabilize cancer for longer than chemotherapy alone.
This phase I trial tests the safety and tolerability of an experimental personalized vaccine when given by itself and with pembrolizumab in treating patients with solid tumor cancers that have spread to other places in the body (advanced). The experimental vaccine is designed target certain proteins (neoantigens) on individuals' tumor cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving the personalized neoantigen peptide-based vaccine with pembrolizumab may be safe and effective in treating patients with advanced solid tumors.
This phase Ib trial tests the safety, side effects, and best dose of tumor treating fields therapy in combination with either cabozantinib or nab-paclitaxel and atezolizumab in treating patients with solid tumors involving the abdomen or thorax that have spread to other parts of the body (advanced). Tumor treating fields therapy on this study utilizes NovoTTF systems that are wearable devices that use electrical fields at different frequencies that may help stop the growth of tumor cells by interrupting cancer cells' ability to divide. Cabozantinib is in a class of medications called kinase inhibitors. It works by blocking the action of an abnormal protein that signals tumor cells to multiply. This helps slow or stop the spread of tumor cells. Chemotherapy drugs, such as nab-paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving tumor treating fields therapy in combination with either cabozantinib, or with nab-paclitaxel and atezolizumab may help control advanced solid tumors involving the abdomen or thorax.