Treatment Trials

130 Clinical Trials for Various Conditions

Focus your search

ACTIVE_NOT_RECRUITING
Adcetris (Brentuximab Vedotin), Combination Chemotherapy, and Radiation Therapy in Treating Younger Patients With Stage IIB, IIIB and IV Hodgkin Lymphoma
Description

This pilot phase II trial studies how well giving brentuximab vedotin, combination chemotherapy, and radiation therapy works in treating younger patients with stage IIB, IIIB or IV Hodgkin lymphoma. Monoclonal antibodies, such as brentuximab vedotin, can block cancer growth in different ways. Some block the ability of cancer to grow and spread. Others find cancer cells and help kill them or carry cancer killing substances to them. Drugs used in chemotherapy, such as etoposide, prednisone, doxorubicin hydrochloride, cyclophosphamide, and dacarbazine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill cancer cells. Giving brentuximab vedotin with combination chemotherapy may kill more cancer cells and reduce the need for radiation therapy.

COMPLETED
Massage Therapy Given by Caregiver in Treating Quality of Life of Young Patients Undergoing Treatment for Cancer
Description

This clinical trial studies massage therapy given by caregiver in treating quality of life of young patients undergoing treatment for cancer. Massage therapy given by a caregiver may improve the quality of life of young patients undergoing treatment for cancer

Conditions
Accelerated Phase Chronic Myelogenous LeukemiaAcute Undifferentiated LeukemiaAngioimmunoblastic T-cell LymphomaAtypical Chronic Myeloid Leukemia, BCR-ABL1 NegativeBlastic Phase Chronic Myelogenous LeukemiaBurkitt LymphomaChildhood Acute Lymphoblastic Leukemia in RemissionChildhood Acute Myeloid Leukemia in RemissionChildhood Chronic Myelogenous LeukemiaChildhood Diffuse Large Cell LymphomaChildhood Grade III Lymphomatoid GranulomatosisChildhood Immunoblastic Large Cell LymphomaChildhood Myelodysplastic SyndromesChildhood Nasal Type Extranodal NK/T-cell LymphomaChronic Eosinophilic LeukemiaChronic Myelomonocytic LeukemiaChronic Neutrophilic LeukemiaChronic Phase Chronic Myelogenous LeukemiaContiguous Stage II Mantle Cell LymphomaCutaneous B-cell Non-Hodgkin LymphomaEssential ThrombocythemiaExtramedullary PlasmacytomaIntraocular LymphomaIsolated Plasmacytoma of BoneJuvenile Myelomonocytic LeukemiaMast Cell LeukemiaMeningeal Chronic Myelogenous LeukemiaNoncontiguous Stage II Mantle Cell LymphomaPolycythemia VeraPost-transplant Lymphoproliferative DisorderPrimary MyelofibrosisPrimary Systemic AmyloidosisProgressive Hairy Cell Leukemia, Initial TreatmentProlymphocytic LeukemiaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Acute Myeloid LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent/Refractory Childhood Hodgkin LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Hairy Cell LeukemiaRefractory Multiple MyelomaRelapsing Chronic Myelogenous LeukemiaSecondary Acute Myeloid LeukemiaStage 0 Chronic Lymphocytic LeukemiaStage I Childhood Anaplastic Large Cell LymphomaStage I Childhood Hodgkin LymphomaStage I Childhood Large Cell LymphomaStage I Childhood Lymphoblastic LymphomaStage I Childhood Small Noncleaved Cell LymphomaStage I Chronic Lymphocytic LeukemiaStage I Cutaneous T-cell Non-Hodgkin LymphomaStage I Multiple MyelomaStage I Mycosis Fungoides/Sezary SyndromeStage II Childhood Anaplastic Large Cell LymphomaStage II Childhood Hodgkin LymphomaStage II Childhood Large Cell LymphomaStage II Childhood Lymphoblastic LymphomaStage II Childhood Small Noncleaved Cell LymphomaStage II Chronic Lymphocytic LeukemiaStage II Cutaneous T-cell Non-Hodgkin LymphomaStage II Multiple MyelomaStage II Mycosis Fungoides/Sezary SyndromeStage III Childhood Anaplastic Large Cell LymphomaStage III Childhood Hodgkin LymphomaStage III Childhood Large Cell LymphomaStage III Childhood Lymphoblastic LymphomaStage III Childhood Small Noncleaved Cell LymphomaStage III Chronic Lymphocytic LeukemiaStage III Cutaneous T-cell Non-Hodgkin LymphomaStage III Multiple MyelomaStage III Mycosis Fungoides/Sezary SyndromeStage IV Childhood Anaplastic Large Cell LymphomaStage IV Childhood Hodgkin LymphomaStage IV Childhood Large Cell LymphomaStage IV Childhood Lymphoblastic LymphomaStage IV Childhood Small Noncleaved Cell LymphomaStage IV Chronic Lymphocytic LeukemiaStage IV Cutaneous T-cell Non-Hodgkin LymphomaStage IV Mycosis Fungoides/Sezary SyndromeT-cell Large Granular Lymphocyte LeukemiaUnspecified Childhood Solid Tumor, Protocol Specific
COMPLETED
Combination Chemotherapy and Radiation Therapy in Treating Young Patients With Newly Diagnosed Hodgkin Lymphoma
Description

This phase III trial is studying how well giving combination chemotherapy together with radiation therapy works in treating young patients with newly diagnosed Hodgkin lymphoma. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high energy x-rays to kill cancer cells. Giving combination chemotherapy together with radiation therapy may kill more cancer cells.

COMPLETED
Collecting and Storing Biological Samples From Young Patients With Hodgkin?s Lymphoma
Description

This laboratory study is collecting and storing samples of tissue and blood from young patients with Hodgkin's lymphoma. Collecting and storing samples of tumor tissue and blood from patients with cancer to study in the laboratory may help the study of cancer in the future.

COMPLETED
Bortezomib, Ifosfamide, and Vinorelbine Tartrate in Treating Young Patients With Hodgkin's Lymphoma That is Recurrent or Did Not Respond to Previous Therapy
Description

This phase II trial studies the side effects and efficacy of bortezomib with ifosfamide and vinorelbine in children and young adults with Hodgkin's lymphoma that was recurrent or did not respond to previous therapy. Bortezomib is an inhibitor of protein degradation. Bortezomib degrades short-lived regulatory proteins in the cell, and has been reported to increase the tumor cells. Bortezomib may increase the effectiveness of ifosfamide and vinorelbine (two standard drugs given to children with Hodgkin Lymphoma that has come back after initial treatment) by making cancer cells more sensitive to effectiveness of standard chemotherapy by preventing anti-death responses in these drugs. Giving bortezomib together with ifosfamide and vinorelbine tartrate should kill more cancer cells than are killed with ifosfamide and vinorelbine alone.

COMPLETED
Haploidentical Donor Bone Marrow Transplant in Treating Patients With High-Risk Hematologic Cancer
Description

This phase II trial studies how well giving fludarabine phosphate, cyclophosphamide, tacrolimus, mycophenolate mofetil and total-body irradiation together with a donor bone marrow transplant works in treating patients with high-risk hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate and cyclophosphamide, and total-body irradiation before a donor bone marrow transplant helps stop the growth of cancer cells by stopping them from dividing or killing them. Giving cyclophosphamide after transplant may also stop the patient's immune system from rejecting the donor's bone marrow stem cells. The donated stem cells may replace the patient's immune system cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and mycophenolate mofetil after the transplant may stop this from happening

Conditions
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Lymphoblastic Leukemia in RemissionAdult Acute Myeloid Leukemia in RemissionAdult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With Del(5q)Adult Acute Myeloid Leukemia With Inv(16)(p13;q22)Adult Acute Myeloid Leukemia With t(15;17)(q22;q12)Adult Acute Myeloid Leukemia With t(16;16)(p13;q22)Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)Adult Nasal Type Extranodal NK/T-cell LymphomaAnaplastic Large Cell LymphomaAngioimmunoblastic T-cell LymphomaChildhood Acute Lymphoblastic Leukemia in RemissionChildhood Acute Myeloid Leukemia in RemissionChildhood Burkitt LymphomaChildhood Chronic Myelogenous LeukemiaChildhood Myelodysplastic SyndromesChildhood Nasal Type Extranodal NK/T-cell LymphomaCutaneous B-cell Non-Hodgkin Lymphomade Novo Myelodysplastic SyndromesExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueHematopoietic/Lymphoid CancerHepatosplenic T-cell LymphomaIntraocular LymphomaNodal Marginal Zone B-cell LymphomaPeripheral T-cell LymphomaPost-transplant Lymphoproliferative DisorderPreviously Treated Myelodysplastic SyndromesRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-cell Leukemia/LymphomaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRecurrent/Refractory Childhood Hodgkin LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Multiple MyelomaRelapsing Chronic Myelogenous LeukemiaSecondary Myelodysplastic SyndromesSmall Intestine LymphomaSplenic Marginal Zone LymphomaStage II Multiple MyelomaStage III Adult Burkitt LymphomaStage III Adult Diffuse Large Cell LymphomaStage III Adult Diffuse Mixed Cell LymphomaStage III Adult Diffuse Small Cleaved Cell LymphomaStage III Adult Hodgkin LymphomaStage III Adult Immunoblastic Large Cell LymphomaStage III Adult Lymphoblastic LymphomaStage III Adult T-cell Leukemia/LymphomaStage III Childhood Hodgkin LymphomaStage III Chronic Lymphocytic LeukemiaStage III Cutaneous T-cell Non-Hodgkin LymphomaStage III Grade 1 Follicular LymphomaStage III Grade 2 Follicular LymphomaStage III Grade 3 Follicular LymphomaStage III Mantle Cell LymphomaStage III Marginal Zone LymphomaStage III Multiple MyelomaStage III Mycosis Fungoides/Sezary SyndromeStage III Small Lymphocytic LymphomaStage IV Adult Burkitt LymphomaStage IV Adult Diffuse Large Cell LymphomaStage IV Adult Diffuse Mixed Cell LymphomaStage IV Adult Diffuse Small Cleaved Cell LymphomaStage IV Adult Hodgkin LymphomaStage IV Adult Immunoblastic Large Cell LymphomaStage IV Adult Lymphoblastic LymphomaStage IV Adult T-cell Leukemia/LymphomaStage IV Childhood Hodgkin LymphomaStage IV Chronic Lymphocytic LeukemiaStage IV Cutaneous T-cell Non-Hodgkin LymphomaStage IV Grade 1 Follicular LymphomaStage IV Grade 2 Follicular LymphomaStage IV Grade 3 Follicular LymphomaStage IV Mantle Cell LymphomaStage IV Marginal Zone LymphomaStage IV Mycosis Fungoides/Sezary SyndromeStage IV Small Lymphocytic LymphomaTesticular LymphomaWaldenström Macroglobulinemia
COMPLETED
Chemotherapy With or Without Additional Chemotherapy and/or Radiation Therapy in Treating Children With Newly Diagnosed Hodgkin's Disease
Description

This randomized phase III trial is studying different chemotherapy regimens given with or without radiation therapy to compare how well they work in treating children with newly diagnosed Hodgkin's disease. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Giving the drugs in different combinations may kill more cancer cells. Radiation therapy uses high-energy x-rays to damage cancer cells. It is not yet known if chemotherapy is more effective with or without additional chemotherapy and/or radiation therapy in treating Hodgkin's disease.

WITHDRAWN
Recombinant Human Mannose-Binding Lectin (MBL) in Treating Young Patients With MBL Deficiency and Fever and Neutropenia
Description

RATIONALE: Recombinant human mannose-binding lectin (MBL) may be effective in preventing infection in young patients with fever and neutropenia receiving chemotherapy for blood disease or cancer. PURPOSE: This phase I trial is studying the side effects and best dose of recombinant human mannose-binding lectin in treating young patients with MBL deficiency and fever and neutropenia.

TERMINATED
Donor Umbilical Cord Blood Transplant in Treating Patients With Advanced Hematological Cancer or Other Disease
Description

RATIONALE: Giving low doses of chemotherapy and total-body irradiation before a donor umbilical cord blood transplant helps stop the growth of cancer or abnormal cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil before and after transplant may stop this from happening. PURPOSE: This phase II trial is studying how well donor umbilical cord blood transplant with reduced intensity conditioning works in treating patients with advanced hematological cancer or other disease.

ACTIVE_NOT_RECRUITING
Carmustine, Etoposide, Cyclophosphamide, and Stem Cell Transplant in Treating Patients With HIV-Associated Lymphoma
Description

RATIONALE: Giving high-dose chemotherapy drugs, such as carmustine, etoposide, and cyclophosphamide, before a peripheral blood stem cell transplant stops the growth of cancer cells by stopping them from dividing or killing them. After treatment, stem cells that were collected from the patient's blood are returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. PURPOSE: This clinical trial is studying the side effects of giving high-dose carmustine, etoposide, and cyclophosphamide together with a stem cell transplant and to see how well it works in treating patients with HIV-associated lymphoma.

Conditions
COMPLETED
Sirolimus, Tacrolimus, and Antithymocyte Globulin in Preventing Graft-Versus-Host Disease in Patients Undergoing a Donor Stem Cell Transplant For Hematological Cancer
Description

RATIONALE: Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus, sirolimus, antithymocyte globulin, and methotrexate before and after transplant may stop this from happening. PURPOSE: This phase II trial is studying how well sirolimus, tacrolimus, and antithymocyte globulin work in preventing graft-versus-host disease in patients undergoing a donor stem cell transplant for hematological cancer .

COMPLETED
Combination Chemotherapy Followed by Donor Stem Cell Transplant in Treating Patients With Relapsed or High-Risk Primary Refractory Hodgkin Lymphoma
Description

RATIONALE: Giving chemotherapy before a donor stem cell transplant helps stop the growth of cancer cells. It also helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving cyclosporine, mycophenolate mofetil, and methotrexate before and after transplant may stop this from happening. PURPOSE: This phase II trial is studying how well combination chemotherapy followed by donor stem cell transplant works in treating patients with relapsed or high-risk primary refractory Hodgkin lymphoma.

Conditions
WITHDRAWN
Ovarian Damage in Young Premenopausal Women Undergoing Chemotherapy for Cancer
Description

RATIONALE: Comparing results of diagnostic procedures, such as ultrasound, done before, during, and after chemotherapy may help doctors learn about the side effects of chemotherapy and help plan the best treatment. PURPOSE: This clinical trial is studying ovarian damage in young premenopausal women undergoing chemotherapy for cancer.

COMPLETED
Busulfan, Melphalan, and Thiotepa in Treating Patients Who Are Undergoing an Autologous Stem Cell Transplant for Hodgkin's or Non-Hodgkin's Lymphoma
Description

RATIONALE: Chemotherapy, such as busulfan, melphalan, and thiotepa, may destroy cancerous blood-forming cells (stem cells) in the blood and bone marrow. Giving the patient their healthy stem cells will help their bone marrow make new stem cells that become red blood cells, white blood cells, and platelets. PURPOSE: This phase II trial is studying how well busulfan, melphalan, and thiotepa work in treating patients who are undergoing an autologous stem cell transplant for Hodgkin's or non-Hodgkin's lymphoma.

Conditions
COMPLETED
Long-Term Effects of Treatment in Patients Previously Treated for Childhood Hodgkin's Lymphoma
Description

RATIONALE: Assessing the long-term effects of cancer treatment in cancer survivors may help improve the ability to plan effective treatment and follow-up care. PURPOSE: This clinical trial is studying the long-term effects of treatment in patients who were previously treated for childhood Hodgkin's lymphoma.

UNKNOWN
Umbilical Cord Blood for Stem Cell Transplantation in Treating Young Patients With Malignant or Nonmalignant Diseases
Description

RATIONALE: Umbilical cord blood transplantation may be able to replace immune cells that were destroyed by chemotherapy or radiation therapy. PURPOSE: This phase II trial is studying how well umbilical cord blood works as a source of stem cells in treating patients with types of cancer as well as other diseases.

UNKNOWN
Whole-Body MRI and Conventional Imaging in Detecting Distant Metastases in Young Patients With Solid Tumors or Lymphoma
Description

RATIONALE: New imaging procedures, such as whole-body MRI, may improve the ability to detect metastatic cancer and determine the extent of disease. PURPOSE: This clinical trial is studying whole-body MRI to see how well it works compared to standard imaging procedures in detecting distant metastases in patients with solid tumors or lymphoma.

COMPLETED
Study of @neWorld: A Virtual Community for Children With Cancer
Description

RATIONALE: Using an Internet Web site that enables children with cancer to interact online with classmates, participate in classroom activities, get easy-to-read medical information, and chat with family members, medical staff, and other children with cancer may help children cope with isolation, fear, and decreased self-esteem. PURPOSE: This phase I/II trial is studying the effectiveness of an Internet Web site in providing social support and education to children who are undergoing treatment for cancer.

COMPLETED
Voriconazole in Preventing Fungal Infections in Children With Neutropenia After Chemotherapy
Description

RATIONALE: Voriconazole may be effective in preventing systemic fungal infections following chemotherapy. PURPOSE: Phase II trial to study the effectiveness of voriconazole in preventing systemic fungal infections in children who have neutropenia after receiving chemotherapy for leukemia, lymphoma, or aplastic anemia or in preparation for bone marrow or stem cell transplantation.

COMPLETED
Cyproheptadine and Megestrol in Preventing Weight Loss in Children With Cachexia Caused By Cancer or Cancer Treatment
Description

RATIONALE: Cyproheptadine and megestrol may improve appetite and help prevent weight loss in children with cancer. PURPOSE: This phase II trial is studying how well cyproheptadine and megestrol work in improving appetite and preventing weight loss in children with cachexia caused by cancer or cancer treatment.

COMPLETED
Electroacupuncture in Treating Delayed Nausea and Vomiting in Patients Receiving Chemotherapy For Newly Diagnosed Childhood Sarcoma, Neuroblastoma, Nasopharyngeal Cancer, Germ Cell Tumors, or Hodgkin Lymphoma
Description

RATIONALE: Electroacupuncture may help to reduce or prevent delayed nausea and vomiting in patients treated with chemotherapy. PURPOSE: This randomized clinical trial is studying the effectiveness of electroacupuncture in treating delayed nausea and vomiting in patients who are receiving chemotherapy for newly diagnosed childhood sarcoma, neuroblastoma, nasopharyngeal cancer, germ cell tumors, or Hodgkin lymphoma.

COMPLETED
Combination Chemotherapy, Peripheral Stem Cell Transplantation, and Biological Therapy in Treating Patients With Solid Tumors or Lymphoma
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining chemotherapy with peripheral stem cell transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells. Biological therapies such as interleukin-2 use different ways to stimulate the immune system and stop cancer cells from growing. PURPOSE: Phase II trial to study the effectiveness of combination chemotherapy, peripheral stem cell transplantation, and interleukin-2 in treating patients who have solid tumors or lymphoma.

UNKNOWN
Combination Chemotherapy Followed by Donor Bone Marrow Transplant or Peripheral Stem Cell Transplant in Treating Patients With Hematologic Cancer or Genetic Disorders
Description

RATIONALE: Giving chemotherapy drugs, such as fludarabine and melphalan, before a donor bone marrow transplant or peripheral blood stem cell transplant helps stop the patient's immune system from rejecting the donor's stem cells and helps stop the growth of cancer or abnormal cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. PURPOSE: This phase II trial is studying how well giving combination chemotherapy followed by donor bone marrow transplant or peripheral stem cell transplant works in treating patients with hematologic cancer or genetic disorders.

COMPLETED
Genetic Study in Patients Receiving Treatment for Hodgkin's Disease or Childhood Brain Tumor
Description

RATIONALE: Determination of genetic markers for leukemia or non-Hodgkin's lymphoma that is secondary to Hodgkin's disease and childhood brain tumors may help doctors to identify patients who are at risk for these cancers. PURPOSE: Clinical trial to determine the presence of certain genes in patients who are receiving treatment for Hodgkin's disease or childhood brain tumors.

COMPLETED
Ganciclovir Plus Arginine Butyrate in Treating Patients With Cancer or Lymphoproliferative Disorders Associated With the Epstein Barr Virus
Description

RATIONALE: The Epstein Barr virus can cause cancer and lymphoproliferative disorders. Ganciclovir is an antiviral drug that acts against the Epstein Barr virus. Arginine butyrate may make virus cells more sensitive to ganciclovir. Combining ganciclovir and arginine butyrate may kill more Epstein Barr virus cells and tumor cells. PURPOSE: Phase I trial to study the effectiveness of arginine butyrate plus ganciclovir in treating patients who have cancer or lymphoproliferative disorders that are associated with the Epstein Barr virus.

COMPLETED
Quality of Life in Children Treated for Cancer
Description

RATIONALE: Questionnaires that measure quality of life may improve the ability to plan treatment for children with cancer. PURPOSE: This randomized clinical trial is studying the quality of life in children treated for cancer.

COMPLETED
St. John's Wort in Relieving Fatigue in Patients Undergoing Chemotherapy or Hormone Therapy for Cancer
Description

RATIONALE: Giving St. John's wort may be effective in relieving fatigue in patients with cancer who are undergoing chemotherapy or hormone therapy. PURPOSE: Randomized phase III trial to determine the effectiveness of St. John's wort in relieving fatigue in patients who are undergoing chemotherapy or hormone therapy for cancer.

COMPLETED
Peripheral Blood Lymphocyte Therapy to Prevent Lymphoproliferative Disorders Caused by Epstein-Barr Virus in Patients Who Have Undergone Transplantation
Description

RATIONALE: Peripheral blood lymphocyte therapy may be effective in the treatment and prevention of Epstein-Barr virus infection following transplantation. PURPOSE: Phase II trial to study the effectiveness of peripheral blood lymphocyte therapy in treating and preventing lymphoproliferative disorders in patients who have Epstein-Barr virus infection following transplantation.

COMPLETED
Combination Chemotherapy With or Without Dexrazoxane in Treating Children With Hodgkin's Disease
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Chemoprotective drugs, such as dexrazoxane, may protect normal cells from the side effects of chemotherapy. PURPOSE: Randomized phase III trial to compare the effectiveness of combination chemotherapy with or without dexrazoxane in treating children who have Hodgkin's disease.

COMPLETED
Bone Marrow and Peripheral Stem Cell Transplantation in Treating Patients With Hematologic Cancer
Description

RATIONALE: Bone marrow and peripheral stem cell transplantation may be able to replace immune cells that were destroyed by chemotherapy or radiation therapy used to kill tumor cells. PURPOSE: Phase I trial to study the effectiveness of bone marrow and peripheral stem cell transplantation in treating patients who have hematologic cancer.