22 Clinical Trials for Various Conditions
This randomized phase II trial studies how well positron emission tomography (PET)/computed tomography (CT)-guided radiation therapy works compared to standard radiation therapy in treating patients with stage III non-small cell lung cancer. Radiation therapy uses high-energy x-rays to kill tumor cells. Using imaging procedures, such as PET and CT scans, to guide the radiation therapy, may help doctors deliver higher doses directly to the tumor and cause less damage to healthy tissue.
This phase II trial finds out the effect of local consolidative therapy and durvalumab in treating patients with stage III non-small cell lung cancer that has 3 or fewer lesions of progression (oligoprogressive) and greater than 3 lesions of progression (polyprogressive) after chemoradiation and anti-PD-l1 therapy. Local consolidative therapy, such as surgery and/or radiation, after initial treatment may kill any remaining tumor cells. Immunotherapy with durvalumab, may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Giving local consolidative therapy and durvalumab may help to control the disease.
This phase I trial studies the side effects and best dose of genetically modified T-cell therapy in treating patients with receptor tyrosine kinase-like orphan receptor 1 positive (ROR1+) chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), acute lymphoblastic leukemia (ALL), stage IV non-small cell lung cancer (NSCLC), or triple negative breast cancer (TNBC) that has spread to other places in the body and usually cannot be cured or controlled with treatment (advanced). Genetically modified therapies, such as ROR1 specific chimeric antigen receptor (CAR) T-cells, are taken from a patient's blood, modified in the laboratory so they specifically may kill cancer cells with a protein called ROR1 on their surfaces, and safely given back to the patient after conventional therapy. The "genetically modified" T-cells have genes added in the laboratory to make them recognize ROR1.
This phase I trial studies the side effects and best dose of methoxyamine when given together with pemetrexed disodium, cisplatin, and radiation therapy in treating patients with stage IIIA-IV non-small cell lung cancer. Drugs used in chemotherapy, such as methoxyamine hydrochloride, pemetrexed disodium, and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high-energy x-rays to kill tumor cells and shrink tumors. Giving methoxyamine hydrochloride together with pemetrexed disodium, cisplatin, and radiation therapy may kill more tumor cells.
This phase Ib trial studies the side effects and best dose of osimertinib and navitoclax when given together and to see how well they work in treating patients with previously treated epidermal growth factor receptor (EGFR)-positive non-small cell lung cancer that has spread to other places in the body (metastatic) or has not responded to previous treatment with initial EGFR kinase inhibitor. Osimertinib and navitoclax may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase I trial studies the side effects and best dose of sapanisertib when given together with osimertinib in treating patients with stage IV EGFR mutation positive non-small cell lung cancer that has progressed after treatment with an EGFR tyrosine kinase inhibitor. Sapanisertib and osimertinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase II trial studies cediranib maleate in combination with olaparib in treating patients with solid tumors that have spread to other parts of the body (advanced/metastatic) or cannot be removed by surgery (unresectable), including breast cancer, non-small cell lung cancer, small cell lung cancer, and pancreatic cancer. Cediranib maleate and olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Cediranib maleate may also block the flow of oxygen to the tumor, and may help make the tumor more sensitive to olaparib.
This trial studies the side effects and how well nintedanib works compared to a placebo in treating against radiation-induced pneumonitis (inflammation of the lungs) in patients with non-small cell lung cancer that cannot be removed by surgery and are undergoing chemoradiation therapy. Nintedanib may help shrink or slow the growth of radiation-induced pneumonitis by blocking some of the enzymes needed for cells to grow and may prevent the growth of new blood vessels. It may also help reduce the recurrence of non-small cell lung cancer.
This phase I trial studies the side effects and the best dose of trametinib when given together with combination chemotherapy and radiation therapy in treating patients with stage III non-small cell lung cancer that cannot be removed by surgery. Trametinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as carboplatin and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill tumor cells. Giving trametinib, combination chemotherapy, and radiation therapy may be a better treatment for non-small cell lung cancer.
This phase I/II partially randomized trial studies the side effects and best dose of veliparib when given together with radiation therapy, carboplatin, and paclitaxel and to see how well it works in treating patients with stage III non-small cell lung cancer that cannot be removed by surgery. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as carboplatin and paclitaxel, work in different ways to stop the growth of tumor cells either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether radiation therapy, carboplatin, and paclitaxel are more effective with or without veliparib in treating non-small cell lung cancer.
This randomized phase III trial studies sunitinib malate to see how well it works when given as maintenance therapy (meaning it is approved for treatment after chemotherapy) in patients with stage IIIB-IV non-small cell lung cancer who have responded to prior treatment with combination chemotherapy. Sunitinib malate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking the growth of new blood vessels necessary for tumor growth. It is not yet known whether sunitinib malate is effective in helping tumors continue to shrink or stop growing.
This clinical trial studies combination chemotherapy, radiation therapy, and bevacizumab in treating patients with newly diagnosed stage III non-small cell lung cancer that cannot be removed by surgery. Drugs used in chemotherapy, such as cisplatin, etoposide, and docetaxel, work in different ways to stop the growth of \[cancer/tumor\] cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high-energy x-rays to kill tumor cells. Monoclonal antibodies, such as bevacizumab, may interfere with the ability of tumor cells to grow and spread. Bevacizumab may also stop the growth of tumor cells by blocking blood flow to the tumor. Giving more than one drug (combination chemotherapy) together with radiation therapy and bevacizumab may kill more tumor cells.
This randomized phase II trial studies how well erlotinib hydrochloride with or without carboplatin and paclitaxel works in treating patients with stage III-IV non-small cell lung cancer. Erlotinib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as carboplatin and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving erlotinib hydrochloride together with carboplatin and paclitaxel may kill more tumor cells than giving either drug alone.
This pilot research trial studies the collection of blood samples in monitoring tumor specific mutations in patients with non-small cell lung cancer that has spread to other places in the body or cannot be removed by surgery. Collecting blood samples may help measure the changes in lung cancer, better learn methods to track cancer in the bloodstream, and improve cancer treatments.
This randomized phase II trial studies how well erlotinib hydrochloride or crizotinib with chemoradiation therapy works in treating patients with stage III non-small cell lung cancer. Radiation therapy uses high energy x rays to kill tumor cells. Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. Drugs used in chemotherapy, such as cisplatin, etoposide, paclitaxel, and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether giving erlotinib hydrochloride is more effective than crizotinib with chemoradiation therapy in treating patients with non-small cell lung cancer.
This phase I/II trial studies the best dose and side effects of anetumab ravtansine when given together with atezolizumab and how well they work in treating participants with non-small cell lung cancer that has spread to other places in the body. Monoclonal antibodies, such as anetumab ravtansine and atezolizumab, may interfere with the ability of tumor cells to grow and spread.
This phase I trial studies the best dose and side effects of trigriluzole in combination with nivolumab and pembrolizumab in treating patients with solid malignancies or lymphoma that has spread to other places in the body or cannot be removed by surgery. Trigriluzole may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as nivolumab and pembrolizumab, may interfere with the ability of tumor cells to grow and spread. Giving trigriluzole in combination with nivolumab and pembrolizumab may work better at treating patients with solid malignancies or lymphoma.
This phase I/II trial studies the side effects and best dose of genetically modified T cells in treating patients with stage III-IV non-small cell lung cancer (NSCLC) or mesothelioma. Many types of cancer cells, including NSCLC and mesothelioma, but not most normal cells, have a protein called Wilms tumor (WT)1 on their surfaces. This study takes a type of immune cell from patients, called T cells, and modifies their genes in the laboratory so that they are programmed to find cells with WT1 and kill them. The T cells are then given back to the patient. Cyclophosphamide and aldesleukin may also stimulate the immune system to attack cancer cells. Giving cyclophosphamide and aldesleukin with laboratory-treated T cells may help the body build an immune response to kill tumor cells.
This randomized phase III trial studies proton chemoradiotherapy to see how well it works compared to photon chemoradiotherapy in treating patients with stage II-IIIB non-small cell lung cancer that cannot be removed by surgery. Specialized radiation therapy that delivers a high dose of radiation directly to the tumor, such as photon or proton beam radiation therapy, may kill more tumor cells and cause less damage to normal tissue. Drugs used in chemotherapy, such as paclitaxel, carboplatin, etoposide, and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether proton chemoradiotherapy is more effective than photon chemoradiotherapy in treating non-small cell lung cancer.
This phase I trial studies docetaxel, cisplatin, and erlotinib hydrochloride in treating patients with stage I-III non-small cell lung cancer following surgery. Drugs used in chemotherapy, such as docetaxel and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Erlotinib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving docetaxel, cisplatin, and erlotinib hydrochloride together may kill more tumor cells.
This phase I trial studies the side effects and best dose of recombinant interleukin-15 in treating patients with melanoma, kidney cancer, non-small cell lung cancer, or head and neck cancer that has spread to other places in the body and usually cannot be cured or controlled with treatment. Recombinant interleukin-(IL)15 is a biological product, a protein, made naturally in the body and when made in the laboratory may help stimulate the immune system in different ways and stop tumor cells from growing.
This phase I trial studies the best dose and side effects of abexinostat and how well it works with given together with pembrolizumab in treating participants with microsatellite instability (MSI) solid tumors that have spread to other places in the body. Abexinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as pembrolizumab, may interfere with the ability of tumor cells to grow and spread. Giving abexinostat and pembrolizumab may work better in treating participants with solid tumors.