296 Clinical Trials for Various Conditions
This phase II trial tests the safety, side effects and effectiveness of mosunetuzumab in treating patients with slow growing (indolent) B-cell lymphoma. Mosunetuzumab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread.
This phase I/II trial finds out the best dose, possible benefits and/or side effects of ALX148 in combination with rituximab and lenalidomide in treating patients with indolent and aggressive B-cell non-Hodgkin lymphoma. Immunotherapy with ALX148, may induce changes in body's immune system and may interfere with the ability of cancer cells to grow and spread. Chemotherapy drugs, such as lenalidomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Rituximab is a monoclonal antibody that binds to a protein called CD20 found on B-cells, and may kill cancer cells. Giving ALX148 in combination with rituximab and lenalidomide may help to control the disease.
This phase I/Ib trial studies the side effects and best dose of parsaclisib with or without polatuzumab-vedotin (Pola) plus the standard drug therapy (rituximab, cyclophosphamide, doxorubicin hydrochloride, vincristine sulfate, and prednisone \[PaR-CHOP\]) and to see how well they work compared with R-CHOP alone in treating patients with newly diagnosed, high risk diffuse large B-cell lymphoma. Parsaclisib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Rituximab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Polatuzumab-vedotin is a monoclonal antibody, called polatuzumab, linked to a chemotherapy drug, called vedotin. Polatuzumab is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, known as anti-CD79b receptors, and delivers vedotin to kill them. Drugs used in chemotherapy, such as cyclophosphamide, doxorubicin hydrochloride, and vincristine sulfate, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Anti-inflammatory drugs, such as prednisone, lower the body's immune response and are used with other drugs in the treatment of some types of cancer. It is not yet known if giving parsaclisib and R-CHOP together works better than R-CHOP alone in treating patients with high risk diffuse large B-cell lymphoma.
This phase II trial studies how well ibrutinib in combination with rituximab and lenalidomide works in treating patients with previously untreated, stage II-IV follicular lymphoma or marginal zone lymphoma. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as rituximab, may block cancer growth in different ways by targeting certain cells. Biological therapies, such as lenalidomide, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop cancer cells from growing. Giving ibrutinib in combination with rituximab and lenalidomide may work better in treating follicular lymphoma or marginal zone lymphoma.
This phase I/II trial studies the side effects and best dose of lenalidomide when given together with combination chemotherapy and to see how well they work in treating patients with v-myc myelocytomatosis viral oncogene homolog (avian) (MYC)-associated B-cell lymphomas. Lenalidomide may stop the growth of B-cell lymphomas by blocking the growth of new blood vessels necessary for cancer growth and by blocking some of the enzymes needed for cell growth. Biological therapies, such as lenalidomide, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop cancer cells from growing. Drugs used in chemotherapy, such as etoposide, prednisone, vincristine sulfate, doxorubicin hydrochloride, cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as rituximab, may block cancer growth in different ways by targeting certain cells. Giving lenalidomide together with combination chemotherapy may be an effective treatment in patients with B-cell lymphoma.
This phase II trial studies the side effects and how well giving pegfilgrastim together with rituximab works in treating patients with untreated, relapsed, or refractory follicular lymphoma, small lymphocytic lymphoma (SLL), or marginal zone lymphoma (MZL). Colony-stimulating factors, such as pegfilgrastim, may increase the number of immune cells found in bone marrow or peripheral blood and may help the immune system recover from the side effects of therapy. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer to grow and spread. Others find cancer cells and help kill them or tumor cancer-killing substances to them. Giving pegfilgrastim together with rituximab may kill more cancer cells
RATIONALE: Growth factors, such as palifermin, may prevent chronic graft-versus-host disease caused by donor stem cell transplant. PURPOSE: This randomized clinical trial studies palifermin in preventing chronic graft-versus-host disease in patients who have undergone donor stem cell transplant for hematologic cancer
This phase I clinical trial is studying the side effects and best dose of RO4929097 when given together with capecitabine in treating patients with refractory solid tumors. RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving RO4929097 together with chemotherapy may kill more tumor cells.
RATIONALE: AR-42 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I trial is studying the side effects and best dose of AR-42 in treating patients with advanced or relapsed multiple myeloma, chronic lymphocytic leukemia, or lymphoma.
RATIONALE: Giving chemotherapy and total-body irradiation (TBI) before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they will help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Giving colony-stimulating factors, such as filgrastim (G-CSF) and plerixafor, to the donor helps the stem cells move (mobilization) from the bone marrow to the blood so they can be collected and stored. PURPOSE: This clinical trial is studying giving plerixafor and filgrastim together for mobilization of donor peripheral blood stem cells before a peripheral blood stem cell transplant in treating patients with hematologic malignancies
RATIONALE: Lenalidomide may stop the growth of cancer by blocking blood flow to the tumor. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving lenalidomide together with rituximab may be an effective treatment for B-cell non-Hodgkin lymphoma. PURPOSE: This phase I/II trial is studying the side effects and best dose of lenalidomide when given together with rituximab as maintenance therapy in treating patients with B-cell non-Hodgkin lymphoma.
This phase I trial is studying the side effects and best dose of gossypol when given together with paclitaxel and carboplatin in treating patients with solid tumors that are metastatic or cannot be removed by surgery. Drugs used in chemotherapy, such as gossypol, paclitaxel, and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving gossypol together with paclitaxel and carboplatin may kill more tumor cells
Drugs used in chemotherapy, such as FAU, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. This phase I trial is studying the side effects and best dose of FAU in treating patients with advanced solid tumors or lymphoma.
This phase II trial studies how well lenalidomide works in combination with rituximab in treating participants with stage III-IV non-Hodgkin lymphoma that is growing slowly. Lenalidomide is designed to change the body's immune system. It may also interfere with the development of tiny blood vessels that help support tumor growth, which may prevent the growth of cancer cells. Monoclonal antibodies, such as rituximab, may interfere with the ability of cancer cells to grow and spread. Giving lenalidomide and rituximab may work better in participants with indolent non-Hodgkin lymphoma.
This phase I trial studies the side effects and best dose of dasatinib in treating patients with solid tumors or lymphomas that are metastatic or cannot be removed by surgery. Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase I trial is studying the side effects and best dose of vorinostat in treating patients with metastatic or unresectable solid tumors or lymphoma and liver dysfunction. (closed for accrual as of 04/05/2010) Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Vorinostat may have different effects in patients who have changes in their liver function.
This phase I trial is studying the side effects and best dose of giving PDX101 together with 17-AAG in treating patients with metastatic or unresectable solid tumors or lymphoma. PDX101 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Drugs used in chemotherapy, such as 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving PXD101 together with 17-AAG may kill more cancer cells.
This phase I trial is studying the side effects and best dose of PXD101 and bortezomib in treating patients with advanced solid tumors or lymphomas. PXD101 and bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PXD101 may also cause cancer cells to look more like normal cells, and to grow and spread more slowly. Giving PXD101 together with bortezomib may kill more cancer cells.
This phase I trial is studying the best dose of 3-AP and the side effects of giving 3-AP together with gemcitabine in treating patients with advanced solid tumors or lymphoma. Drugs used in chemotherapy, such as 3-AP and gemcitabine (GEM), work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. 3-AP may help gemcitabine kill more cancer cells by making the cells more sensitive to the drug. 3-AP may also stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase I/II trial is studying the side effects and best dose of fenretinide and to see how well it works when given together with rituximab in treating patients with B-cell non-Hodgkin lymphoma. Drugs used in chemotherapy, such as fenretinide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some find cancer cells and kill them or carry cancer-killing substances to them. Others interfere with the ability of cancer cells to grow and spread. Giving fenretinide together with rituximab may kill more cancer cells.
This phase II trial studies the side effects and how well giving rituximab and dexamethasone together works in treating patients with low-grade non-Hodgkin lymphoma (NHL). Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Drugs used in chemotherapy, such as dexamethasone, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving rituximab together with dexamethasone may kill more cancer cells
This phase I trial is studying the side effects and best dose of sorafenib in treating patients with metastatic or unresectable solid tumors, multiple myeloma, or non-Hodgkin's lymphoma with or without impaired liver or kidney function. Sorafenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Sorafenib may have different effects in patients who have changes in their liver or kidney function
This phase I trial is studying the side effects and best dose of giving tanespimycin together with bortezomib in treating patients with advanced solid tumors or lymphomas. (Accrual for lymphoma patients closed as of 11/27/09) Drugs used in chemotherapy, such as tanespimycin, work in different ways to stop cancer cells from dividing so they stop growing or die. Bortezomib may stop the growth of cancer cells by blocking the enzymes necessary for their growth. It may also increase the effectiveness of tanespimycin by making cancer cells more sensitive to the drug. Combining tanespimycin with bortezomib may kill more cancer cells.
This phase I trial is studying the side effects and best dose of 17-DMAG in treating patients with metastatic or unresectable solid tumors or lymphomas. Drugs used in chemotherapy, such as 17-DMAG, work in different ways to stop cancer cells from dividing so they stop growing or die
This phase I trial is studying the side effects and best dose of EMD 121974 in treating patients with solid tumors or lymphoma. Cilengitide (EMD 121974) may stop the growth of cancer cells by stopping blood flow to the cancer
This phase I trial studies the side effects, best way to give, and the best dose of alvocidib when given together with fludarabine phosphate and rituximab in treating patients with previously untreated or relapsed lymphoproliferative disorders or mantle cell lymphoma. Monoclonal antibodies such as rituximab can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Drugs used in chemotherapy such as alvocidib and fludarabine use different ways to stop cancer cells from dividing so they stop growing or die. Combining monoclonal antibody therapy with chemotherapy may kill more cancer cells.
This phase II trial studies how well giving fludarabine phosphate, cyclophosphamide, tacrolimus, mycophenolate mofetil and total-body irradiation together with a donor bone marrow transplant works in treating patients with high-risk hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate and cyclophosphamide, and total-body irradiation before a donor bone marrow transplant helps stop the growth of cancer cells by stopping them from dividing or killing them. Giving cyclophosphamide after transplant may also stop the patient's immune system from rejecting the donor's bone marrow stem cells. The donated stem cells may replace the patient's immune system cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and mycophenolate mofetil after the transplant may stop this from happening
Monoclonal antibodies can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Phase I trial to study the effectiveness of monoclonal antibody therapy in treating patients who have chronic lymphocytic leukemia, lymphocytic lymphoma, acute lymphoblastic leukemia, or acute myeloid leukemia.
This phase I trial is studying how well monoclonal antibody therapy with peripheral stem cell transplant works in treating patients with non-Hodgkin's lymphoma. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Peripheral stem cell transplant may allow the doctor to give higher doses of monoclonal antibodies and kill more cancer cells
Monoclonal antibodies such as rituximab can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Interleukin-2 may stimulate a person's white blood cells to kill cancer cells. Combining rituximab with interleukin-2 may kill more cancer cells. Phase I trial to study the effectiveness of rituximab plus interleukin-2 in treating patients who have hematologic cancer.