Treatment Trials

30 Clinical Trials for Various Conditions

Focus your search

RECRUITING
An Automated Personalized Physical Activity Intervention to Improve Immune Function and Clinical Outcomes in Stage II-IV Ovarian, Primary Peritoneal or Fallopian Tube Cancer and Newly Diagnosed Endometrial Cancer, Life on the Go 3 Study
Description

This clinical trial compares the effect of an automated personalized physical activity intervention supported by wearable technology to standard of care on physical activity levels and quality of life in patients with stage II- IV ovarian, primary peritoneal, fallopian tube cancer or endometrial cancer that is newly diagnosed. Physical activity is a modifiable risk factor for the prevention and treatment of many diseases. In fact, increased levels of physical activity have been shown to decrease the risk of some cancers as well as increase overall survival in some cancers. Currently, standard of care guidelines include participation in at least 150 minutes of moderate exercise weekly. An automated personalized physical activity intervention may increase physical activity, enhance quality of life, and improve physical function and daily living activities compared to standard recommendations in patients with stage II-IV ovarian, primary peritoneal, fallopian tube or newly diagnosed endometrial cancer. This trial also evaluates the impact of physical activity on the gut microbiome and immune function. The microbiome is the collection of tiny organisms, like bacteria, that live in and on the body, especially places like the gut. These microorganisms play an important role in health. Information gathered from this study may help understand how the gut microbiome and physical activity influences the immune system in patients with stage II-IV ovarian, primary peritoneal, fallopian tube or newly diagnosed endometrial cancer.

NOT_YET_RECRUITING
A Precision Medicine Approach (SMMART-ACT) for the Treatment of Patients With Advanced, Recurrent Sarcoma, Prostate, Breast, Ovarian or Pancreatic Cancer
Description

This phase II trial tests the how well a precision medicine approach (serial measurements of molecular and architectural response to therapy \[SMMART\])-adaptive clinical treatment \[ACT\]) works in treating patients with sarcoma, prostate, breast, ovarian or pancreatic cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). SMMART testing uses genetic and protein tests to learn how cancer changes and to understand what drugs may work against a person's cancer or why drugs stop working. These test results are reviewed by a group of physicians and scientists during a SMMART tumor board who then recommend precision therapy.

ACTIVE_NOT_RECRUITING
e-Health Intervention (Day-by-Day) for the Management of Fear of Progression in Women With Stage III or IV Gynecologic Cancer: A Pilot Study
Description

This clinical trial studies how well an electronic (e)-health intervention (day-by-day) woks in managing fears or worries about cancer growing, spreading, or getting worse (progression) in patients with stage III or IV gynecologic cancer. Fear and worries about cancer progression or recurrence (coming back) are common concerns. This may contribute to concerns related to illness, worries, and uncertainty about the future. Day by Day is adapted from a program called "Conquer Fear" which was shown to benefit patients with early-stage cancer. Day-by-day intervention may help refocus patient thoughts and help patients learn skills to manage anxiety and fears.

RECRUITING
CPI-613 (Devimistat) in Combination With Hydroxychloroquine and 5-fluorouracil or Gemcitabine in Treating Patients With Advanced Chemorefractory Solid Tumors
Description

This phase II trial tests how well CPI-613 (devimistat) in combination with hydroxychloroquine (HCQ) and 5-fluorouracil (5-FU) or gemcitabine works in patients with solid tumors that may have spread from where they first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) or that have not responded to chemotherapy medications (chemorefractory). Metabolism is how the cells in the body use molecules (carbohydrates, fats, and proteins) from food to get the energy they need to grow, reproduce and stay healthy. Tumor cells, however, do this process differently as they use more molecules (glucose, a type of carbohydrate) to make the energy they need to grow and spread. CPI-613 works by blocking the creation of the energy that tumor cells need to survive, grow in the body and make more tumor cells. When the energy production they need is blocked, the tumor cells can no longer survive. Hydroxychloroquine is a drug used to treat malaria and rheumatoid arthritis and may also improve the immune system in a way that tumors may be better controlled. Fluorouracil is in a class of medications called antimetabolites. It works by killing fast-growing abnormal cells. Gemcitabine is a chemotherapy drug that blocks the cells from making DNA and may kill tumor cells. CPI-613 (devimistat) in combination with hydroxychloroquine and 5-fluorouracil or gemcitabine may work to better treat advanced solid tumors.

RECRUITING
Hyperthermic Intraperitoneal Chemotherapy With Cisplatin During Surgery or Cisplatin Before Surgery for the Treatment of Stage III or IV Ovarian, Fallopian Tube or Peritoneal Cancer
Description

This phase I trial studies the side effects of hyperthermic intraepithelial chemotherapy with cisplatin after surgery or cisplatin before surgery in treating patients with stage III or IV ovarian, fallopian tube or peritoneal cancer receiving chemotherapy before surgery. Hyperthermic intraepithelial chemotherapy involves the infusion of heated cytotoxic chemotherapy that circulates into the abdominal cavity at the time of surgery. Chemotherapy drugs, such as cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving hyperthermic intraepithelial chemotherapy with cisplatin after surgery or cisplatin before surgery may kill more tumor cells compared to usual care.

ACTIVE_NOT_RECRUITING
Testing the Addition of Ipatasertib to the Usual Chemotherapy Treatment (Paclitaxel and Carboplatin) for Stage III or IV Epithelial Ovarian Cancer
Description

This phase I/IB trial tests the safety, side effects, and best dose of ipatasertib in combination with paclitaxel and carboplatin in treating patients with stage III or IV epithelial ovarian cancer. Ipatasertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Paclitaxel is in a class of medications called taxanes. It stops tumor cells from growing and dividing and may kill them. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of tumor cells. Giving ipatasertib in combination with paclitaxel and carboplatin may lower the chance of the tumor growing or spreading for longer than the paclitaxel and carboplatin alone.

RECRUITING
Phase I Study of Tumor Treating Fields (TTF) in Combination With Cabozantinib or With Pembrolizumab and Nab-Paclitaxel in Patients With Advanced Solid Tumors Involving the Abdomen or Thorax
Description

This phase Ib trial tests the safety, side effects, and best dose of tumor treating fields therapy in combination with either cabozantinib or nab-paclitaxel and atezolizumab in treating patients with solid tumors involving the abdomen or thorax that have spread to other parts of the body (advanced). Tumor treating fields therapy on this study utilizes NovoTTF systems that are wearable devices that use electrical fields at different frequencies that may help stop the growth of tumor cells by interrupting cancer cells' ability to divide. Cabozantinib is in a class of medications called kinase inhibitors. It works by blocking the action of an abnormal protein that signals tumor cells to multiply. This helps slow or stop the spread of tumor cells. Chemotherapy drugs, such as nab-paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving tumor treating fields therapy in combination with either cabozantinib, or with nab-paclitaxel and atezolizumab may help control advanced solid tumors involving the abdomen or thorax.

Conditions
Advanced Breast CarcinomaAdvanced Endometrial CarcinomaAdvanced Fallopian Tube CarcinomaAdvanced Hepatocellular CarcinomaAdvanced Malignant Abdominal NeoplasmAdvanced Malignant Female Reproductive System NeoplasmAdvanced Malignant Thoracic NeoplasmAdvanced Ovarian CarcinomaAdvanced Primary Peritoneal CarcinomaAdvanced Renal Cell CarcinomaAnatomic Stage III Breast Cancer AJCC v8Anatomic Stage IIIA Breast Cancer AJCC v8Anatomic Stage IIIB Breast Cancer AJCC v8Anatomic Stage IIIC Breast Cancer AJCC v8Anatomic Stage IV Breast Cancer AJCC v8Malignant Abdominal NeoplasmMalignant Solid NeoplasmMetastatic Breast CarcinomaMetastatic Endometrial CarcinomaMetastatic Fallopian Tube CarcinomaMetastatic Hepatocellular CarcinomaMetastatic Malignant Abdominal NeoplasmMetastatic Malignant Female Reproductive System NeoplasmMetastatic Malignant Thoracic NeoplasmMetastatic Ovarian CarcinomaMetastatic Primary Peritoneal CarcinomaMetastatic Renal Cell CarcinomaPrognostic Stage III Breast Cancer AJCC v8Prognostic Stage IIIA Breast Cancer AJCC v8Prognostic Stage IIIB Breast Cancer AJCC v8Prognostic Stage IIIC Breast Cancer AJCC v8Prognostic Stage IV Breast Cancer AJCC v8Stage III Fallopian Tube Cancer AJCC v8Stage III Hepatocellular Carcinoma AJCC v8Stage III Ovarian Cancer AJCC v8Stage III Primary Peritoneal Cancer AJCC v8Stage III Renal Cell Cancer AJCC v8Stage III Uterine Corpus Cancer AJCC v8Stage IIIA Fallopian Tube Cancer AJCC v8Stage IIIA Hepatocellular Carcinoma AJCC v8Stage IIIA Ovarian Cancer AJCC v8Stage IIIA Primary Peritoneal Cancer AJCC v8Stage IIIA Uterine Corpus Cancer AJCC v8Stage IIIA1 Fallopian Tube Cancer AJCC v8Stage IIIA1 Ovarian Cancer AJCC v8Stage IIIA2 Fallopian Tube Cancer AJCC v8Stage IIIA2 Ovarian Cancer AJCC v8Stage IIIB Fallopian Tube Cancer AJCC v8Stage IIIB Hepatocellular Carcinoma AJCC v8Stage IIIB Ovarian Cancer AJCC v8Stage IIIB Primary Peritoneal Cancer AJCC v8Stage IIIB Uterine Corpus Cancer AJCC v8Stage IIIC Fallopian Tube Cancer AJCC v8Stage IIIC Ovarian Cancer AJCC v8Stage IIIC Primary Peritoneal Cancer AJCC v8Stage IIIC Uterine Corpus Cancer AJCC v8Stage IIIC1 Uterine Corpus Cancer AJCC v8Stage IIIC2 Uterine Corpus Cancer AJCC v8Stage IV Fallopian Tube Cancer AJCC v8Stage IV Hepatocellular Carcinoma AJCC v8Stage IV Ovarian Cancer AJCC v8Stage IV Primary Peritoneal Cancer AJCC v8Stage IV Renal Cell Cancer AJCC v8Stage IV Uterine Corpus Cancer AJCC v8Stage IVA Fallopian Tube Cancer AJCC v8Stage IVA Hepatocellular Carcinoma AJCC v8Stage IVA Ovarian Cancer AJCC v8Stage IVA Primary Peritoneal Cancer AJCC v8Stage IVA Uterine Corpus Cancer AJCC v8Stage IVB Fallopian Tube Cancer AJCC v8Stage IVB Hepatocellular Carcinoma AJCC v8Stage IVB Ovarian Cancer AJCC v8Stage IVB Primary Peritoneal Cancer AJCC v8Stage IVB Uterine Corpus Cancer AJCC v8
RECRUITING
IACS-6274 With or Without Bevacizumab and Paclitaxel for the Treatment of Advanced Solid Tumors
Description

To find the highest tolerable dose of IACS-6274 that can be given alone, in combination with bevacizumab and paclitaxel, or in combination with capivasertib to patients who have solid tumors. The safety and tolerability of the study drug(s) will also be studied.

RECRUITING
Developing a Test for the Detection of Ovarian Cancer
Description

The study aims to develop a test for early detection of ovarian cancer using DNA from a growth involving the ovary found in a washing of the uterus (womb), and proteins found in the blood. The samples of the wash and the blood will be taken before surgery. After surgery, doctors will determine whether the participant had ovarian cancer or a benign disease of the ovaries. The tests of the washings and the blood will be examined to see how much the participants with ovarian cancer can be separated from the participants with a benign ovarian disease by the tests. Small amounts from the washing and the blood samples will be sent to four sites for analysis. Statistical analyses of these data will compare tumor DNA found in the washing of the uterus with proteins in the blood to detect cases of ovarian cancer. The primary goal is to find tests that are mostly positive for cases of ovarian cancer and mostly negative for patients with benign disease. It is hoped that if the tests work for participants with symptoms of the disease that these tests will also work when testing women who have no symptoms. A new study would be needed to see if the tests worked in this situation. If the tests work, this could lead to increasing the number of cases detected in early stage disease and decreasing the number of cases detected in late stage disease. If this change in late stage is large, it will likely reduce deaths due to ovarian cancer.

ACTIVE_NOT_RECRUITING
Niraparib and TSR-042 for the Treatment of BRCA-Mutated Unresectable or Metastatic Breast, Pancreas, Ovary, Fallopian Tube, or Primary Peritoneal Cancer
Description

This phase IB trial evaluates the effect of niraparib and TSR-042 in treating patients with BRCA-mutated breast, pancreas, ovary, fallopian tube, or primary peritoneal cancer that cannot be removed by surgery (unresectable) or has spread to other places in the body (metastatic). Niraparib is an inhibitor of PARP, an enzyme that helps repair deoxyribonucleic acid (DNA) when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. Immunotherapy with monoclonal antibodies, such as TSR-042, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving niraparib and TSR-042 may kill more cancer cells.

ACTIVE_NOT_RECRUITING
Testing the Addition of an Anti-cancer Drug, Elimusertib (BAY 1895344) ATR Inhibitor, to the Chemotherapy Treatment (Gemcitabine) for Advanced Pancreatic and Ovarian Cancer, and Advanced Solid Tumors
Description

This phase I trial identifies the best dose, possible benefits and/or side effects of gemcitabine in combination with elimusertib (BAY 1895344) in treating patients with pancreatic, ovarian, and other solid tumors that have spread to other places in the body (advanced). Gemcitabine is a chemotherapy drug that blocks the cell from making DNA and may kill tumor cells. elimusertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving gemcitabine and elimusertib in combination may shrink or stabilize cancer.

RECRUITING
Measuring the Effects of Talazoparib in Patients With Advanced Cancer and DNA Repair Variations
Description

This phase II trial studies if talazoparib works in patients with cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and has mutation(s) in deoxyribonucleic acid (DNA) damage response genes who have or have not already been treated with another PARP inhibitor. Talazoparib is an inhibitor of PARP, a protein that helps repair damaged DNA. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. All patients who take part on this study must have a gene aberration that changes how their tumors are able to repair DNA. This trial may help scientists learn whether some patients might benefit from taking different PARP inhibitors "one after the other" and learn how talazoparib works in treating patients with advanced cancer who have aberration in DNA repair genes.

ACTIVE_NOT_RECRUITING
Testing the Combination of the Anti-cancer Drugs XL184 (Cabozantinib) and Nivolumab in Patients With Advanced Cancer and HIV
Description

This phase I trial investigates the side effects of cabozantinib and nivolumab in treating patients with cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and who are undergoing treatment for human immunodeficiency virus (HIV). Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving cabozantinib and nivolumab may shrink or stabilize cancer in patients undergoing treatment for HIV.

Conditions
Advanced Differentiated Thyroid Gland CarcinomaAdvanced Head and Neck CarcinomaAdvanced Hepatocellular CarcinomaAdvanced Kaposi SarcomaAdvanced Lung Non-Small Cell CarcinomaAdvanced Lung Small Cell CarcinomaAdvanced Malignant Solid NeoplasmAdvanced MelanomaAdvanced Ovarian CarcinomaAdvanced Prostate CarcinomaAdvanced Renal Cell CarcinomaAdvanced Thyroid Gland Medullary CarcinomaAdvanced Triple-Negative Breast CarcinomaAdvanced Urothelial CarcinomaAnatomic Stage III Breast Cancer AJCC v8Anatomic Stage IV Breast Cancer AJCC v8Castration-Resistant Prostate CarcinomaClinical Stage III Cutaneous Melanoma AJCC v8Clinical Stage IV Cutaneous Melanoma AJCC v8HIV InfectionMetastatic Differentiated Thyroid Gland CarcinomaMetastatic Head and Neck CarcinomaMetastatic Hepatocellular CarcinomaMetastatic Kaposi SarcomaMetastatic Lung Non-Small Cell CarcinomaMetastatic Lung Small Cell CarcinomaMetastatic Malignant Solid NeoplasmMetastatic MelanomaMetastatic Ovarian CarcinomaMetastatic Prostate CarcinomaMetastatic Renal Cell CarcinomaMetastatic Thyroid Gland Medullary CarcinomaMetastatic Triple-Negative Breast CarcinomaMetastatic Urothelial CarcinomaRecurrent Differentiated Thyroid Gland CarcinomaRecurrent Head and Neck CarcinomaRecurrent Hepatocellular CarcinomaRecurrent Kaposi SarcomaRecurrent Lung Non-Small Cell CarcinomaRecurrent Lung Small Cell CarcinomaRecurrent Malignant Solid NeoplasmRecurrent MelanomaRecurrent Ovarian CarcinomaRecurrent Prostate CarcinomaRecurrent Renal Cell CarcinomaRecurrent Thyroid Gland Medullary CarcinomaRecurrent Triple-Negative Breast CarcinomaRecurrent Urothelial CarcinomaRefractory Differentiated Thyroid Gland CarcinomaStage III Differentiated Thyroid Gland Carcinoma AJCC v8Stage III Hepatocellular Carcinoma AJCC v8Stage III Lung Cancer AJCC v8Stage III Ovarian Cancer AJCC v8Stage III Prostate Cancer AJCC v8Stage III Renal Cell Cancer AJCC v8Stage III Thyroid Gland Medullary Carcinoma AJCC v8Stage IV Differentiated Thyroid Gland Carcinoma AJCC v8Stage IV Hepatocellular Carcinoma AJCC v8Stage IV Lung Cancer AJCC v8Stage IV Ovarian Cancer AJCC v8Stage IV Prostate Cancer AJCC v8Stage IV Renal Cell Cancer AJCC v8Stage IV Thyroid Gland Medullary Carcinoma AJCC v8
ACTIVE_NOT_RECRUITING
Testing the Addition of an Anti-cancer Drug, BAY 1895344, to the Usual Chemotherapy Treatment (Cisplatin, or Cisplatin and Gemcitabine) for Advanced Solid Tumors With Emphasis on Urothelial Cancer
Description

This phase I trial identifies the best dose, possible benefits and/or side effects of BAY 1895344 in combination with chemotherapy in treating patients with solid tumors or urothelial cancer that has spread to other places in the body (advanced). BAY 1895344 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Cisplatin and gemcitabine are chemotherapy drugs that stop the growth of tumor cells by killing the cells. Combining BAY 1895344 with chemotherapy treatment (cisplatin, or cisplatin and gemcitabine) may be effective for the treatment of advanced solid tumors, including urothelial cancer.

RECRUITING
National Cancer Institute "Cancer Moonshot Biobank"
Description

This trial collects multiple tissue and blood samples, along with medical information, from cancer patients. The "Cancer Moonshot Biobank" is a longitudinal study. This means it collects and stores samples and information over time, throughout the course of a patient's cancer treatment. By looking at samples and information collected from the same people over time, researchers hope to better understand how cancer changes over time and over the course of medical treatments.

COMPLETED
Pharmacogenomics Testing in the Optimal Use of Supportive Care Medications in Stage III-IV Cancer
Description

This early phase I trial studies how well a genetic test called pharmacogenomics works in directing the optimal use of supportive care medications in patients with stage III-IV cancer. Pharmacogenomics is the study of how genes may affect the body's response to and interaction with some prescription medications. Genes, which are inherited from parents, carry information that determines things such as eye color and blood type. Genes can also influence how patients process and respond to medications. Depending on the genetic makeup, some medications may work faster or slower or produce more or fewer side effects. Pharmacogenomics testing may help doctors learn more about how patients break down and process specific medications based on their genes and improve the quality of life of cancer patients receiving clinical care.

Conditions
Anatomic Stage III Breast Cancer AJCC v8Anatomic Stage IIIA Breast Cancer AJCC v8Anatomic Stage IIIB Breast Cancer AJCC v8Anatomic Stage IIIC Breast Cancer AJCC v8Anatomic Stage IV Breast Cancer AJCC v8Biliary Tract CarcinomaClinical Stage III Cutaneous Melanoma AJCC v8Clinical Stage IV Cutaneous Melanoma AJCC v8Malignant Brain NeoplasmMalignant Genitourinary System NeoplasmMalignant Solid NeoplasmPancreatobiliary CarcinomaPathologic Stage III Cutaneous Melanoma AJCC v8Pathologic Stage IIIA Cutaneous Melanoma AJCC v8Pathologic Stage IIIB Cutaneous Melanoma AJCC v8Pathologic Stage IIIC Cutaneous Melanoma AJCC v8Pathologic Stage IV Cutaneous Melanoma AJCC v8Prognostic Stage III Breast Cancer AJCC v8Prognostic Stage IIIA Breast Cancer AJCC v8Prognostic Stage IIIB Breast Cancer AJCC v8Prognostic Stage IIIC Breast Cancer AJCC v8Prognostic Stage IV Breast Cancer AJCC v8Stage III Colorectal Cancer AJCC v8Stage III Ovarian Cancer AJCC v8Stage III Pancreatic Cancer AJCC v8Stage III Prostate Cancer AJCC v8Stage IIIA Colorectal Cancer AJCC v8Stage IIIA Ovarian Cancer AJCC v8Stage IIIA Prostate Cancer AJCC v8Stage IIIB Colorectal Cancer AJCC v8Stage IIIB Ovarian Cancer AJCC v8Stage IIIB Prostate Cancer AJCC v8Stage IIIC Colorectal Cancer AJCC v8Stage IIIC Ovarian Cancer AJCC v8Stage IIIC Prostate Cancer AJCC v8Stage IV Colorectal Cancer AJCC v8Stage IV Ovarian Cancer AJCC v8Stage IV Pancreatic Cancer AJCC v8Stage IV Prostate Cancer AJCC v8Stage IVA Colorectal Cancer AJCC v8Stage IVA Ovarian Cancer AJCC v8Stage IVA Pancreatic CancerStage IVA Prostate Cancer AJCC v8Stage IVB Colorectal Cancer AJCC v8Stage IVB Ovarian Cancer AJCC v8Stage IVB Pancreatic CancerStage IVB Prostate Cancer AJCC v8Stage IVC Colorectal Cancer AJCC v8
ACTIVE_NOT_RECRUITING
Olaparib in Treating Patients With Newly Diagnosed BRCA-Mutant Ovarian, Primary Peritoneal, or Fallopian Cancer Before Surgery
Description

This early phase I trial studies how well olaparib works in treating patients with newly diagnosed BRCA-mutant ovarian, primary peritoneal, or fallopian cancer before surgery. Olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

ACTIVE_NOT_RECRUITING
Treatment Effects on Development of Chemotherapy-Induced Peripheral Neuropathy in Patients With Cancer
Description

This trial studies treatment effects on development of chemotherapy-induced peripheral neuropathy in patients with cancer. Treatments for cancer can cause a problem to the nervous system (called peripheral neuropathy) that can lead to tingling or less feeling in hands and feet. Studying certain risk factors, such as age, gender, pre-existing conditions, and the type of treatment for cancer may help doctors estimate how likely patients are to develop the nerve disorder.

Conditions
Anatomic Stage I Breast Cancer AJCC v8Anatomic Stage IA Breast Cancer AJCC v8Anatomic Stage IB Breast Cancer AJCC v8Anatomic Stage II Breast Cancer AJCC v8Anatomic Stage IIA Breast Cancer AJCC v8Anatomic Stage IIB Breast Cancer AJCC v8Anatomic Stage III Breast Cancer AJCC v8Anatomic Stage IIIA Breast Cancer AJCC v8Anatomic Stage IIIB Breast Cancer AJCC v8Anatomic Stage IIIC Breast Cancer AJCC v8Lung Non-Small Cell CarcinomaPrognostic Stage I Breast Cancer AJCC v8Prognostic Stage IA Breast Cancer AJCC v8Prognostic Stage IB Breast Cancer AJCC v8Prognostic Stage II Breast Cancer AJCC v8Prognostic Stage IIA Breast Cancer AJCC v8Prognostic Stage IIB Breast Cancer AJCC v8Prognostic Stage III Breast Cancer AJCC v8Prognostic Stage IIIA Breast Cancer AJCC v8Prognostic Stage IIIB Breast Cancer AJCC v8Prognostic Stage IIIC Breast Cancer AJCC v8Stage I Lung Cancer AJCC v8Stage I Ovarian Cancer AJCC v8Stage IA Ovarian Cancer AJCC v8Stage IA1 Lung Cancer AJCC v8Stage IA2 Lung Cancer AJCC v8Stage IA3 Lung Cancer AJCC v8Stage IB Lung Cancer AJCC v8Stage IB Ovarian Cancer AJCC v8Stage IC Ovarian Cancer AJCC v8Stage II Lung Cancer AJCC v8Stage II Ovarian Cancer AJCC v8Stage IIA Lung Cancer AJCC v8Stage IIA Ovarian Cancer AJCC v8Stage IIB Lung Cancer AJCC v8Stage IIB Ovarian Cancer AJCC v8Stage III Lung Cancer AJCC v8Stage III Ovarian Cancer AJCC v8Stage IIIA Lung Cancer AJCC v8Stage IIIA Ovarian Cancer AJCC v8Stage IIIA1 Ovarian Cancer AJCC v8Stage IIIA2 Ovarian Cancer AJCC v8Stage IIIB Lung Cancer AJCC v8Stage IIIB Ovarian Cancer AJCC v8Stage IIIC Lung Cancer AJCC v8Stage IIIC Ovarian Cancer AJCC v8
ACTIVE_NOT_RECRUITING
Modified Immune Cells (Autologous CAR T Cells) in Treating Patients with Advanced, Recurrent Platinum Resistant Ovarian, Fallopian Tube or Primary Peritoneal Cancer
Description

This is a Phase I/Ib dose escalation, dose expansion, study to evaluate the safety and identify the recommended dose of modified immune cells PRGN-3005 (autologous chimeric antigen receptor (CAR) T cells developed by Precigen, Inc.) in treating patients with ovarian, fallopian tube, or primary peritoneal cancer that has spread to other places in the body, that has come back and is resistant to platinum chemotherapy. Autologous CAR T cells are modified immune cells that have been engineered in the laboratory to specifically target a protein found on tumor cells and kill them.

WITHDRAWN
Specialized Immune Cells (nCTLs) and a Vaccine (Alpha-type-1 Polarized Dendritic Cells) in Treating Patients With Stage II-IV Ovarian, Fallopian Tube, or Primary Peritoneal Cancer
Description

This phase I/IIa trial studies the side effects and best dose of a type of specialized immune cell (natural killer cell-like cytotoxic T-lymphocytes (CTLs) (nCTLs) and how well they work when given with a vaccine (alpha-type-1 polarized dendritic cells) in treating patients with stage II-IV ovarian, fallopian tube, or primary peritoneal cancer. nCTLs are immune cells that are isolated from each patient?s blood and "taught" in the laboratory how to recognize and eliminate tumor cells. These "educated" immune cells are then given back to the patient. An alpha-type-1 polarized dendritic cell vaccine is another population of "educated" immune cells that work to support the infused nCTLs. Giving nCTLS with a dendritic cell vaccine may work better in treating patients with ovarian, fallopian tube, or primary peritoneal cancer.

ACTIVE_NOT_RECRUITING
Genetic Analysis of Blood and Tissue Samples From Patients With Advanced Cancer, Moonshot Study
Description

This trial studies the genetic analysis of blood and tissue samples from patients with cancer that has spread to other anatomic sites (advanced) or is no longer responding to treatment. Studying these samples in the laboratory may help doctors to learn how genes affect cancer and how they affect a person's response to treatment.

Conditions
Advanced Malignant NeoplasmAdvanced MelanomaAdvanced Renal Cell CarcinomaAnatomic Stage III Breast Cancer AJCC v8Anatomic Stage IIIA Breast Cancer AJCC v8Anatomic Stage IIIB Breast Cancer AJCC v8Anatomic Stage IIIC Breast Cancer AJCC v8Anatomic Stage IV Breast Cancer AJCC v8Clinical Stage III Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage IV Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage IVA Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage IVB Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage III Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IIIA Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IIIB Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IV Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IVA Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IVB Gastroesophageal Junction Adenocarcinoma AJCC v8Prognostic Stage III Breast Cancer AJCC v8Prognostic Stage IIIA Breast Cancer AJCC v8Prognostic Stage IIIB Breast Cancer AJCC v8Prognostic Stage IIIC Breast Cancer AJCC v8Prognostic Stage IV Breast Cancer AJCC v8Stage III Colorectal Cancer AJCC v8Stage III Lung Cancer AJCC v8Stage III Ovarian Cancer AJCC v8Stage III Prostate Cancer AJCC v8Stage IIIA Colorectal Cancer AJCC v8Stage IIIA Lung Cancer AJCC v8Stage IIIA Ovarian Cancer AJCC v8Stage IIIA Prostate Cancer AJCC v8Stage IIIA1 Ovarian Cancer AJCC v8Stage IIIA2 Ovarian Cancer AJCC v8Stage IIIB Colorectal Cancer AJCC v8Stage IIIB Lung Cancer AJCC v8Stage IIIB Ovarian Cancer AJCC v8Stage IIIB Prostate Cancer AJCC v8Stage IIIC Colorectal Cancer AJCC v8Stage IIIC Lung Cancer AJCC v8Stage IIIC Ovarian Cancer AJCC v8Stage IIIC Prostate Cancer AJCC v8Stage IV Colorectal Cancer AJCC v8Stage IV Lung Cancer AJCC v8Stage IV Ovarian Cancer AJCC v8Stage IV Prostate Cancer AJCC v8Stage IVA Colorectal Cancer AJCC v8Stage IVA Lung Cancer AJCC v8Stage IVA Ovarian Cancer AJCC v8Stage IVA Prostate Cancer AJCC v8Stage IVB Colorectal Cancer AJCC v8Stage IVB Lung Cancer AJCC v8Stage IVB Ovarian Cancer AJCC v8Stage IVB Prostate Cancer AJCC v8Stage IVC Colorectal Cancer AJCC v8
TERMINATED
Lavage of the Uterine Cavity for Diagnosis of Ovarian Cancer
Description

The goal of this project is to develop a minimally invasive test to detect ovarian cancer, by searching for mutations from the tumor in samples obtained from the cervix (Pap smears), and from the uterus (uterine lavage) in participants with advanced ovarian cancer and in participants with increased risk of ovarian cancer due to inherited mutations, such as BRCA or BRCA2 (among others). Pap smear and uterine lavage samples will be collected while the participant is under anesthesia for planned debulking surgery. A novel, highly sensitive and accurate technique, Crispr-Duplex sequencing, will be used to detect tumor associated mutations in TP53 (the most commonly mutated gene in ovarian cancer) within these samples. These results will be compared to sequencing results in the tumor itself for comparison, and Pap and uterine lavage will be compared to each other to determine the optimal test. Ultimately, the goal is to use the results of this study to plan a larger study including women without cancer who are at either increased risk or normal risk of ovarian cancer, for use in early detection.

UNKNOWN
Pembrolizumab in Treating Participants With Metastatic, Recurrent or Locally Advanced Cancer and Genomic Instability
Description

This phase II trial studies how well pembrolizumab works in treating participants with cancer that has spread to other places in the body, has come back or has spread to nearby tissues or lymph nodes. Monoclonal antibodies such as, pembrolizumab, may interfere with the ability of tumor cells to grow and spread.

ACTIVE_NOT_RECRUITING
Gene-Modified T Cells With or Without Decitabine in Treating Patients With Advanced Malignancies Expressing NY-ESO-1
Description

This phase I/IIa trial studies the side effects and best dose of gene-modified T cells when given with or without decitabine, and to see how well they work in treating patients with malignancies expressing cancer-testis antigens 1 (NY-ESO-1) gene that have spread to other places in the body (advanced). A T cell is a type of immune cell that can recognize and kill abnormal cells of the body. Placing a modified gene for NY-ESO-1 into the patients' T cells in the laboratory and then giving them back to the patient may help the body build an immune response to kill tumor cells that express NY-ESO-1. Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether giving gene-modified T cells with or without decitabine works better in treating patients with malignancies expressing NY-ESO-1.

Conditions
Advanced Fallopian Tube CarcinomaAdvanced Malignant Solid NeoplasmAdvanced MelanomaAdvanced Ovarian CarcinomaAdvanced Primary Peritoneal CarcinomaAdvanced Synovial SarcomaClinical Stage III Cutaneous Melanoma AJCC v8Clinical Stage IV Cutaneous Melanoma AJCC v8Metastatic Fallopian Tube CarcinomaMetastatic MelanomaMetastatic Ovarian CarcinomaMetastatic Primary Peritoneal CarcinomaMetastatic Synovial SarcomaPathologic Stage III Cutaneous Melanoma AJCC v8Pathologic Stage IIIA Cutaneous Melanoma AJCC v8Pathologic Stage IIIB Cutaneous Melanoma AJCC v8Pathologic Stage IIIC Cutaneous Melanoma AJCC v8Pathologic Stage IIID Cutaneous Melanoma AJCC v8Pathologic Stage IV Cutaneous Melanoma AJCC v8Platinum-Resistant Fallopian Tube CarcinomaPlatinum-Resistant Ovarian CarcinomaPlatinum-Resistant Primary Peritoneal CarcinomaStage III Fallopian Tube Cancer AJCC v8Stage III Ovarian Cancer AJCC v8Stage III Primary Peritoneal Cancer AJCC v8Stage IIIA Fallopian Tube Cancer AJCC v8Stage IIIA Ovarian Cancer AJCC v8Stage IIIA Primary Peritoneal Cancer AJCC v8Stage IIIA1 Fallopian Tube Cancer AJCC v8Stage IIIA1 Ovarian Cancer AJCC v8Stage IIIA2 Fallopian Tube Cancer AJCC v8Stage IIIA2 Ovarian Cancer AJCC v8Stage IIIB Fallopian Tube Cancer AJCC v8Stage IIIB Ovarian Cancer AJCC v8Stage IIIB Primary Peritoneal Cancer AJCC v8Stage IIIC Fallopian Tube Cancer AJCC v8Stage IIIC Ovarian Cancer AJCC v8Stage IIIC Primary Peritoneal Cancer AJCC v8Stage IV Fallopian Tube Cancer AJCC v8Stage IV Ovarian Cancer AJCC v8Stage IV Primary Peritoneal Cancer AJCC v8Stage IVA Fallopian Tube Cancer AJCC v8Stage IVA Ovarian Cancer AJCC v8Stage IVA Primary Peritoneal Cancer AJCC v8Stage IVB Fallopian Tube Cancer AJCC v8Stage IVB Ovarian Cancer AJCC v8Stage IVB Primary Peritoneal Cancer AJCC v8Unresectable MelanomaUnresectable Ovarian CarcinomaUnresectable Synovial Sarcoma
ACTIVE_NOT_RECRUITING
Infertility Survey Among Reproductive Age Women With Gynecological and Breast Cancer
Description

This study develops infertility survey among reproductive age women with gynecological and breast cancer. This study aims to learn how women consider whether or not to try to have a baby after surviving cancer. The advice gathered from this survey may be shared with patients and survivors in the future, so that they have information to inform their decisions about cancer treatment and family planning.

RECRUITING
Testing the Combination of APG-1252 (Pelcitoclax) and Cobimetinib in Recurrent Ovarian and Endometrial Cancers
Description

This phase I trial tests the safety, side effects, and best dose of combination therapy with pelcitoclax (APG-1252) and cobimetinib in treating patients with ovarian and endometrial cancers that have come back after a period of improvement (recurrent). APG-1252 is a drug that inhibits activity of proteins that prevent cell death, leading to increased cell death and reduced cell growth. Cobimetinib is used in patients whose cancer has a mutated (changed) form of a gene called BRAF. It is in a class of medications called kinase inhibitors. It works by blocking the action of an abnormal protein that signals cancer cells to multiply. This helps slow or stop the spread of cancer cells. Giving APG-1252 in combination with cobimetinib may shrink or stabilize tumor in patients with recurrent ovarian and endometrial cancers.

RECRUITING
Targeted Therapy Directed by Genetic Testing in Treating Patients With Locally Advanced or Advanced Solid Tumors, The ComboMATCH Screening Trial
Description

This ComboMATCH patient screening trial is the gateway to a coordinated set of clinical trials to study cancer treatment directed by genetic testing. Patients with solid tumors that have spread to nearby tissue or lymph nodes (locally advanced) or have spread to other places in the body (advanced) and have progressed on at least one line of standard systemic therapy or have no standard treatment that has been shown to prolong overall survival may be candidates for these trials. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with some genetic changes or abnormalities (mutations) may benefit from treatment that targets that particular genetic mutation. ComboMATCH is designed to match patients to a treatment that may work to control their tumor and may help doctors plan better treatment for patients with locally advanced or advanced solid tumors.

ACTIVE_NOT_RECRUITING
Remote Telemonitoring of Patient-Generated Physiologic Health Data and Patient-Reported Outcomes
Description

This study examines at-home monitoring of patient-generated phsyiologic health data and patient-reported outcomes. Patient-generated health data using at-home monitoring devices and smart device applications are used more and more to measure value and quality in cancer care. This trial may show whether at-home monitoring programs can improve the care of patients after hospital discharge from surgery.

Conditions
Clinical Stage 0 Esophageal Adenocarcinoma AJCC v8Clinical Stage 0 Esophageal Squamous Cell Carcinoma AJCC v8Clinical Stage 0 Gastric Cancer AJCC v8Clinical Stage I Esophageal Adenocarcinoma AJCC v8Clinical Stage I Esophageal Squamous Cell Carcinoma AJCC v8Clinical Stage I Gastric Cancer AJCC v8Clinical Stage II Esophageal Adenocarcinoma AJCC v8Clinical Stage II Esophageal Squamous Cell Carcinoma AJCC v8Clinical Stage II Gastric Cancer AJCC v8Clinical Stage IIA Esophageal Adenocarcinoma AJCC v8Clinical Stage IIA Gastric Cancer AJCC v8Clinical Stage IIB Esophageal Adenocarcinoma AJCC v8Clinical Stage IIB Gastric Cancer AJCC v8Clinical Stage III Esophageal Adenocarcinoma AJCC v8Clinical Stage III Esophageal Squamous Cell Carcinoma AJCC v8Clinical Stage III Gastric Cancer AJCC v8Clinical Stage IV Esophageal Adenocarcinoma AJCC v8Clinical Stage IV Esophageal Squamous Cell Carcinoma AJCC v8Clinical Stage IV Gastric Cancer AJCC v8Clinical Stage IVA Esophageal Adenocarcinoma AJCC v8Clinical Stage IVA Esophageal Squamous Cell Carcinoma AJCC v8Clinical Stage IVA Gastric Cancer AJCC v8Clinical Stage IVB Esophageal Adenocarcinoma AJCC v8Clinical Stage IVB Esophageal Squamous Cell Carcinoma AJCC v8Clinical Stage IVB Gastric Cancer AJCC v8Hepatobiliary NeoplasmMalignant Digestive System NeoplasmMalignant Female Reproductive System NeoplasmMalignant Genitourinary System NeoplasmMalignant NeoplasmPathologic Stage 0 Esophageal Adenocarcinoma AJCC v8Pathologic Stage 0 Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage 0 Gastric Cancer AJCC v8Pathologic Stage I Esophageal Adenocarcinoma AJCC v8Pathologic Stage I Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage I Gastric Cancer AJCC v8Pathologic Stage IA Esophageal Adenocarcinoma AJCC v8Pathologic Stage IA Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage IA Gastric Cancer AJCC v8Pathologic Stage IB Esophageal Adenocarcinoma AJCC v8Pathologic Stage IB Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage IB Gastric Cancer AJCC v8Pathologic Stage IC Esophageal Adenocarcinoma AJCC v8Pathologic Stage II Esophageal Adenocarcinoma AJCC v8Pathologic Stage II Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage II Gastric Cancer AJCC v8Pathologic Stage IIA Esophageal Adenocarcinoma AJCC v8Pathologic Stage IIA Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage IIA Gastric Cancer AJCC v8Pathologic Stage IIB Esophageal Adenocarcinoma AJCC v8Pathologic Stage IIB Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage IIB Gastric Cancer AJCC v8Pathologic Stage III Esophageal Adenocarcinoma AJCC v8Pathologic Stage III Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage III Gastric Cancer AJCC v8Pathologic Stage IIIA Esophageal Adenocarcinoma AJCC v8Pathologic Stage IIIA Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage IIIA Gastric Cancer AJCC v8Pathologic Stage IIIB Esophageal Adenocarcinoma AJCC v8Pathologic Stage IIIB Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage IIIB Gastric Cancer AJCC v8Pathologic Stage IIIC Gastric Cancer AJCC v8Pathologic Stage IV Esophageal Adenocarcinoma AJCC v8Pathologic Stage IV Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage IV Gastric Cancer AJCC v8Pathologic Stage IVA Esophageal Adenocarcinoma AJCC v8Pathologic Stage IVA Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage IVB Esophageal Adenocarcinoma AJCC v8Pathologic Stage IVB Esophageal Squamous Cell Carcinoma AJCC v8Postneoadjuvant Therapy Stage I Esophageal Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage I Esophageal Squamous Cell Carcinoma AJCC v8Postneoadjuvant Therapy Stage II Esophageal Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage II Esophageal Squamous Cell Carcinoma AJCC v8Postneoadjuvant Therapy Stage III Esophageal Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage III Esophageal Squamous Cell Carcinoma AJCC v8Postneoadjuvant Therapy Stage IIIA Esophageal Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IIIA Esophageal Squamous Cell Carcinoma AJCC v8Postneoadjuvant Therapy Stage IIIB Esophageal Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IIIB Esophageal Squamous Cell Carcinoma AJCC v8Postneoadjuvant Therapy Stage IV Esophageal Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IV Esophageal Squamous Cell Carcinoma AJCC v8Postneoadjuvant Therapy Stage IVA Esophageal Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IVA Esophageal Squamous Cell Carcinoma AJCC v8Postneoadjuvant Therapy Stage IVB Esophageal Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IVB Esophageal Squamous Cell Carcinoma AJCC v8Stage 0 Colorectal Cancer AJCC v8Stage 0a Bladder Cancer AJCC v8Stage 0is Bladder Cancer AJCC v8Stage I Bladder Cancer AJCC v8Stage I Cervical Cancer AJCC v8Stage I Colorectal Cancer AJCC v8Stage I Ovarian Cancer AJCC v8Stage I Prostate Cancer AJCC v8Stage I Renal Cell Cancer AJCC v8Stage I Uterine Corpus Cancer AJCC v8Stage IA Cervical Cancer AJCC v8Stage IA Ovarian Cancer AJCC v8Stage IA Uterine Corpus Cancer AJCC v8Stage IA1 Cervical Cancer AJCC v8Stage IA2 Cervical Cancer AJCC v8Stage IB Cervical Cancer AJCC v8Stage IB Ovarian Cancer AJCC v8Stage IB Uterine Corpus Cancer AJCC v8Stage IB1 Cervical Cancer AJCC v8Stage IB2 Cervical Cancer AJCC v8Stage IC Ovarian Cancer AJCC v8Stage II Bladder Cancer AJCC v8Stage II Cervical Cancer AJCC v8Stage II Colorectal Cancer AJCC v8Stage II Ovarian Cancer AJCC v8Stage II Prostate Cancer AJCC v8Stage II Renal Cell Cancer AJCC v8Stage II Uterine Corpus Cancer AJCC v8Stage IIA Cervical Cancer AJCC v8Stage IIA Colorectal Cancer AJCC v8Stage IIA Ovarian Cancer AJCC v8Stage IIA Prostate Cancer AJCC v8Stage IIA1 Cervical Cancer AJCC v8Stage IIA2 Cervical Cancer AJCC v8Stage IIB Cervical Cancer AJCC v8Stage IIB Colorectal Cancer AJCC v8Stage IIB Ovarian Cancer AJCC v8Stage IIB Prostate Cancer AJCC v8Stage IIC Colorectal Cancer AJCC v8Stage IIC Prostate Cancer AJCC v8Stage III Bladder Cancer AJCC v8Stage III Cervical Cancer AJCC v8Stage III Colorectal Cancer AJCC v8Stage III Ovarian Cancer AJCC v8Stage III Prostate Cancer AJCC v8Stage III Renal Cell Cancer AJCC v8Stage III Uterine Corpus Cancer AJCC v8Stage IIIA Bladder Cancer AJCC v8Stage IIIA Cervical Cancer AJCC v8Stage IIIA Colorectal Cancer AJCC v8Stage IIIA Ovarian Cancer AJCC v8Stage IIIA Prostate Cancer AJCC v8Stage IIIA Uterine Corpus Cancer AJCC v8Stage IIIA1 Ovarian Cancer AJCC v8Stage IIIA2 Ovarian Cancer AJCC v8Stage IIIB Bladder Cancer AJCC v8Stage IIIB Cervical Cancer AJCC v8Stage IIIB Colorectal Cancer AJCC v8Stage IIIB Ovarian Cancer AJCC v8Stage IIIB Prostate Cancer AJCC v8Stage IIIB Uterine Corpus Cancer AJCC v8Stage IIIC Colorectal Cancer AJCC v8Stage IIIC Ovarian Cancer AJCC v8Stage IIIC Prostate Cancer AJCC v8Stage IIIC Uterine Corpus Cancer AJCC v8Stage IIIC1 Uterine Corpus Cancer AJCC v8Stage IIIC2 Uterine Corpus Cancer AJCC v8Stage IV Bladder Cancer AJCC v8Stage IV Cervical Cancer AJCC v8Stage IV Colorectal Cancer AJCC v8Stage IV Ovarian Cancer AJCC v8Stage IV Prostate Cancer AJCC v8Stage IV Renal Cell Cancer AJCC v8Stage IV Uterine Corpus Cancer AJCC v8Stage IVA Bladder Cancer AJCC v8Stage IVA Cervical Cancer AJCC v8Stage IVA Colorectal Cancer AJCC v8Stage IVA Ovarian Cancer AJCC v8Stage IVA Prostate Cancer AJCC v8Stage IVA Uterine Corpus Cancer AJCC v8Stage IVB Bladder Cancer AJCC v8Stage IVB Cervical Cancer AJCC v8Stage IVB Colorectal Cancer AJCC v8Stage IVB Ovarian Cancer AJCC v8Stage IVB Prostate Cancer AJCC v8Stage IVB Uterine Corpus Cancer AJCC v8Stage IVC Colorectal Cancer AJCC v8
TERMINATED
Phase IB Study to Evaluate the Safety of Selinexor (KPT-330) in Combination with Multiple Standard Chemotherapy or Immunotherapy Agents in Patients with Advanced Malignancies
Description

This phase Ib trial studies the side effects and best dose of selinexor when given together with several different standard chemotherapy or immunotherapy regimens in treating patients with malignancies that have spread to other places in the body and usually cannot be cured or controlled with treatment (advanced). Selinexor may stop the growth of cancer cells by blocking enzymes needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Studying selinexor with different standard chemotherapy or immunotherapy regimens may help doctors learn the side effects and best dose of selinexor that can be given with different types of treatments in one study.