Treatment Trials

15 Clinical Trials for Various Conditions

Focus your search

ACTIVE_NOT_RECRUITING
Guadecitabine and Durvalumab in Treating Patients With Advanced Liver, Pancreatic, Bile Duct, or Gallbladder Cancer
Description

This phase Ib trial studies the side effects and best dose of guadecitabine and how well it works when given together with durvalumab in treating patients with liver, pancreatic, bile duct, or gallbladder cancer that has spread to other places in the body. Guadecitabine may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as durvalumab, may block tumor growth in different ways by targeting certain cells. Giving guadecitabine and durvalumab may work better in treating patients with liver, pancreatic, bile duct, or gallbladder cancer.

ACTIVE_NOT_RECRUITING
Hypofractionated Stereotactic Body Radiation & Fluorouracil or Capecitabine for Locally Advanced Pancreatic Cancer
Description

Pancreatic cancer, most commonly adenocarcinoma, is the fourth leading cause of cancer death in the United States. The mainstay of management centers on surgical resection (if resectable) and although low (15% to 20%), resectability rates are associated with dismal survival. An estimated 80% to 85% of the patients recur after surgical resection, leading to a median survival of 20 to 24 months and potentially even less depending on lymph nodal involvement or positive margins. The rationale for utilizing neoadjuvant therapy, commonly fluoropyrimidine-based or gemcitabine based chemotherapy or Chemoradiotherapy (CRT), involves possibly down staging borderline resectable and unresectable patients, potentially making them resectable candidates. This randomized phase II trial will study how well hypofractionated stereotactic body radiation therapy (SBRT) and fluorouracil or capecitabine with or without zoledronic acid work in treating participants with pancreatic cancer that has spread to nearby tissue or lymph nodes. Hypofractionated stereotactic body radiation therapy is a specialized radiation therapy that sends higher doses of x-rays over a shorter period of time directly to the tumor using smaller doses over several days which may cause less damage to normal tissue. Drugs used in chemotherapy, such as fluorouracil and capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Zoledronic acid is used in cancer patients to reduce cancer symptoms and may make tumor cells more sensitive to radiation. Giving hypofractionated stereotactic body radiation therapy and fluorouracil or capecitabine with or without zoledronic acid may work better in treating pancreatic cancer.

COMPLETED
Selumetinib Sulfate in Treating Patients With Locally Advanced or Metastatic Pancreatic Cancer With KRAS G12R Mutations
Description

This phase II trial studies how well selumetinib sulfate works in treating patients with pancreatic cancer with Kirsten rat sarcoma (KRAS) G12R mutations that has spread from where it started to nearby tissue or lymph nodes or other places in the body. Selumetinib sulfate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

ACTIVE_NOT_RECRUITING
A Phase 2 Study of Cediranib in Combination With Olaparib in Advanced Solid Tumors
Description

This phase II trial studies cediranib maleate in combination with olaparib in treating patients with solid tumors that have spread to other parts of the body (advanced/metastatic) or cannot be removed by surgery (unresectable), including breast cancer, non-small cell lung cancer, small cell lung cancer, and pancreatic cancer. Cediranib maleate and olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Cediranib maleate may also block the flow of oxygen to the tumor, and may help make the tumor more sensitive to olaparib.

COMPLETED
Afatinib Dimaleate and Capecitabine in Treating Patients With Advanced Refractory Solid Tumors, Pancreatic Cancer or Biliary Cancer
Description

This phase I/Ib trial studies the side effects and best dose of afatinib dimaleate when given together with capecitabine in treating patients with solid tumors, pancreatic cancer, or biliary cancer that has spread to other places in the body and usually cannot be cured or controlled with treatment and has not responded to previous treatment. Afatinib dimaleate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving afatinib dimaleate together with capecitabine may be a better treatment for solid tumors, pancreatic cancer, or biliary cancer.

COMPLETED
Nab-Paclitaxel, Capecitabine, and Radiation Therapy Following Induction Chemotherapy in Treating Patients With Locally Advanced Pancreatic Cancer
Description

This phase I trial studies the side effects and best dose of nab-paclitaxel when given together with capecitabine and radiation therapy following first treatment with chemotherapy (induction therapy) in treating patients with pancreatic cancer that is not spread to tissue far away but is not operable due to abutment or encasement of blood vessels nearby (locally advanced). Drugs used in chemotherapy, such as nab-paclitaxel and capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high-energy x-rays to kill tumor cells and shrink tumors. Giving nab-paclitaxel, capecitabine, and radiation therapy together may kill more tumor cells.

ACTIVE_NOT_RECRUITING
Ropidoxuridine in Treating Patients With Advanced Gastrointestinal Cancer Undergoing Radiation Therapy
Description

This phase I trial studies the side effects and best dose of ropidoxuridine in treating patients with gastrointestinal cancer that has spread to other places in the body and usually cannot be cured or controlled with treatment undergoing radiation therapy. Ropidoxuridine may help radiation therapy work better by making tumor cells more sensitive to the radiation therapy.

ACTIVE_NOT_RECRUITING
Gemcitabine Hydrochloride, Paclitaxel Albumin-Stabilized Nanoparticle Formulation, Metformin Hydrochloride, and a Standardized Dietary Supplement in Treating Patients With Pancreatic Cancer That Cannot be Removed by Surgery
Description

This pilot phase I trial studies the side effects of gemcitabine hydrochloride, nab-paclitaxel, metformin hydrochloride, and a standardized dietary supplement in treating patients with pancreatic cancer that cannot be removed by surgery. Drugs used in chemotherapy, such as gemcitabine hydrochloride and paclitaxel albumin-stabilized nanoparticle formulation, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Metformin hydrochloride, used for diabetes, may also help kill cancer cells. Dietary supplements (curcumin, vitamin D, vitamin K2, vitamin K1, B-6, high selenium broccoli sprouts, epigallocatechin gallate, L-carnitine, garlic extract, genistein, zinc amino chelate, mixed toxopherols, ascorbic acid, D-limonene) can block different targets in the cancer cell simultaneously and may slow down cancer growth. Giving gemcitabine hydrochloride, paclitaxel albumin-stabilized nanoparticle formulation, and metformin hydrochloride with a dietary supplement may work better in treating patients with pancreatic cancer that cannot be removed by surgery.

COMPLETED
Paclitaxel Albumin-Stabilized Nanoparticle Formulation and Gemcitabine Hydrochloride With or Without WEE1 Inhibitor AZD1775 in Treating Patients With Previously Untreated Pancreatic Cancer That Is Metastatic or Cannot Be Removed by Surgery
Description

This partially randomized phase I/II trial studies the side effects and best dose of WEE1 inhibitor AZD1775 when given together with paclitaxel albumin-stabilized nanoparticle formulation and gemcitabine hydrochloride and how well they work in treating patients with previously untreated pancreatic cancer that has spread to another place in the body or cannot be removed by surgery. Drugs used in chemotherapy, such as paclitaxel albumin-stabilized nanoparticle formulation and gemcitabine hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. WEE1 inhibitor AZD1775 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not yet known whether paclitaxel albumin-stabilized nanoparticle formulation and gemcitabine hydrochloride are more effective with or without WEE1 inhibitor AZD1775 in treating patients with pancreatic cancer.

COMPLETED
Dinaciclib and Akt Inhibitor MK2206 in Treating Patients With Pancreatic Cancer That Cannot Be Removed by Surgery
Description

This randomized phase I trial studies the side effects and best dose of dinaciclib and Akt inhibitor MK2206 in treating patients with pancreatic cancer that cannot be removed by surgery. Dinaciclib and Akt inhibitor MK2206 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

ACTIVE_NOT_RECRUITING
Gemcitabine Hydrochloride, Dasatinib, and Erlotinib Hydrochloride in Treating Patients With Pancreatic Cancer That Is Metastatic or Cannot Be Removed by Surgery
Description

This phase I trial studies the side effects and best dose of gemcitabine hydrochloride and dasatinib when given together with erlotinib hydrochloride in treating patients with pancreatic cancer that has spread to other places in the body or cannot be removed by surgery. Drugs used in chemotherapy, such as gemcitabine hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Dasatinib and erlotinib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving gemcitabine hydrochloride and dasatinib together with erlotinib hydrochloride may kill more tumor cells.

COMPLETED
Romidepsin in Treating Patients With Lymphoma, Chronic Lymphocytic Leukemia, or Solid Tumors With Liver Dysfunction
Description

This phase I trial studies the side effects and best dose of romidepsin in treating patients with lymphoma, chronic lymphocytic leukemia, or solid tumors with liver dysfunction. Romidepsin may stop the growth of cancer cells by entering the cancer cells and by blocking the activity of proteins that are important for the cancer's growth and survival.

Conditions
GliomaHematopoietic and Lymphoid Cell NeoplasmLymphomaMetastatic Malignant Solid NeoplasmNeuroendocrine NeoplasmRecurrent Adult Soft Tissue SarcomaRecurrent Bladder CarcinomaRecurrent Breast CarcinomaRecurrent Chronic Lymphocytic LeukemiaRecurrent Colorectal CarcinomaRecurrent Head and Neck CarcinomaRecurrent Lung CarcinomaRecurrent Malignant Solid NeoplasmRecurrent MelanomaRecurrent Pancreatic CarcinomaRecurrent Primary Cutaneous T-Cell Non-Hodgkin LymphomaRecurrent Prostate CarcinomaRecurrent Renal Cell CarcinomaRecurrent Thyroid Gland CarcinomaRefractory Chronic Lymphocytic LeukemiaRefractory Mature T-Cell and NK-Cell Non-Hodgkin LymphomaRefractory Primary Cutaneous T-Cell Non-Hodgkin LymphomaStage III Breast Cancer AJCC v7Stage III Colorectal Cancer AJCC v7Stage III Cutaneous Melanoma AJCC v7Stage III Lung Cancer AJCC v7Stage III Pancreatic Cancer AJCC v6 and v7Stage III Prostate Cancer AJCC v7Stage III Renal Cell Cancer AJCC v7Stage III Soft Tissue Sarcoma AJCC v7Stage IIIA Breast Cancer AJCC v7Stage IIIA Colorectal Cancer AJCC v7Stage IIIA Cutaneous Melanoma AJCC v7Stage IIIB Breast Cancer AJCC v7Stage IIIB Colorectal Cancer AJCC v7Stage IIIB Cutaneous Melanoma AJCC v7Stage IIIC Breast Cancer AJCC v7Stage IIIC Colorectal Cancer AJCC v7Stage IIIC Cutaneous Melanoma AJCC v7Stage IV Breast Cancer AJCC v6 and v7Stage IV Colorectal Cancer AJCC v7Stage IV Cutaneous Melanoma AJCC v6 and v7Stage IV Lung Cancer AJCC v7Stage IV Pancreatic Cancer AJCC v6 and v7Stage IV Prostate Cancer AJCC v7Stage IV Renal Cell Cancer AJCC v7Stage IV Soft Tissue Sarcoma AJCC v7Stage IVA Colorectal Cancer AJCC v7Stage IVB Colorectal Cancer AJCC v7Unresectable Solid Neoplasm
ACTIVE_NOT_RECRUITING
Vaccine Therapy and Sargramostim in Treating Patients With Pancreas Cancer That Cannot Be Removed By Surgery
Description

This phase I trial studies the side effects and best dose of vaccine therapy when given together with sargramostim in treating patients with locally advanced or metastatic pancreatic cancer that cannot be removed by surgery. Vaccines made from a gene-modified virus may help the body build an effective immune response to kill tumor cells. Colony-stimulating factors, such as sargramostim, may increase the number of immune cells found in bone marrow or peripheral blood. Giving vaccine therapy directly into the tumor together with sargramostim may cause a stronger immune response and kill more tumor cells.

COMPLETED
3-AP and Radiation Therapy in Treating Patients With Stage III Pancreatic Cancer That Cannot Be Removed By Surgery
Description

This phase I trial is studying the side effects and best dose of 3-AP when given together with radiation therapy in treating patients with stage III pancreatic cancer that cannot be removed by surgery. 3-AP may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high-energy x-rays to kill tumor cells. 3-AP may make tumor cells more sensitive to radiation therapy. Giving 3-AP together with radiation therapy may kill more tumor cells.

RECRUITING
Association Between Health Care Provider (HCP)-Assessed ECOG Performance Status (PS) and Overall Survival, and Objectively Measure of Physical Activity (PA) Levels in Advance-cancer Patients"
Description

The main goal of this phase of the study is to determine if objectively assessed Physical Activity (PA) levels in advanced-cancer patients are associated with health care provider (HCP)-assessed ECOG performance status and overall survival. The purpose is to advance the evidence-base for incorporating objective assessment of Physical Activity (PA) in the context of performance status assessment in advanced cancer patients.

Conditions
Malignant Head and Neck NeoplasmMalignant NeoplasmMetastatic Malignant Neoplasm in the NeckMetastatic Malignant Neoplasm in the Uterine CervixPancreatic AdenocarcinomaPancreatic Neuroendocrine CarcinomaRecurrent Colorectal CarcinomaStage I Colorectal Cancer AJCC v6 and v7Stage I Hypopharyngeal Carcinoma AJCC v7Stage I Major Salivary Gland Cancer AJCC v7Stage I Nasopharyngeal Carcinoma AJCC v7Stage I Oral Cavity Cancer AJCC v6 and v7Stage I Oropharyngeal Carcinoma AJCC v6 and v7Stage II Colorectal Cancer AJCC v7Stage II Hypopharyngeal Carcinoma AJCC v6 and v7Stage II Major Salivary Gland Cancer AJCC v7Stage II Nasopharyngeal Carcinoma AJCC v7Stage II Oral Cavity Cancer AJCC v6 and v7Stage II Oropharyngeal Carcinoma AJCC v6 and v7Stage IIA Colorectal Cancer AJCC v7Stage IIB Colorectal Cancer AJCC v7Stage IIC Colorectal Cancer AJCC v7Stage III Colorectal Cancer AJCC v7Stage III Hypopharyngeal Carcinoma AJCC v7Stage III Laryngeal Cancer AJCC v6 and v7Stage III Major Salivary Gland Cancer AJCC v7Stage III Nasopharyngeal Carcinoma AJCC v7Stage III Oral Cavity Cancer AJCC v6 and v7Stage III Oropharyngeal Carcinoma AJCC v7Stage IIIA Colorectal Cancer AJCC v7Stage IIIB Colorectal Cancer AJCC v7Stage IIIC Colorectal Cancer AJCC v7Stage IV Colorectal Cancer AJCC v7Stage IVA Colorectal Cancer AJCC v7Stage IVA Hypopharyngeal Carcinoma AJCC v7Stage IVA Laryngeal Cancer AJCC v7Stage IVA Major Salivary Gland Cancer AJCC v7Stage IVA Nasopharyngeal Carcinoma AJCC v7Stage IVA Oral Cavity Cancer AJCC v6 and v7Stage IVA Oropharyngeal Carcinoma AJCC v7Stage IVB Colorectal Cancer AJCC v7Stage IVB Hypopharyngeal Carcinoma AJCC v7Stage IVB Laryngeal Cancer AJCC v7Stage IVB Major Salivary Gland Cancer AJCC v7Stage IVB Nasopharyngeal Carcinoma AJCC v7Stage IVB Oral Cavity Cancer AJCC v6 and v7Stage IVB Oropharyngeal Carcinoma AJCC v7Metastatic or Locally Unresectable Solid Tumor