15 Clinical Trials for Various Conditions
This study collects urine and stool samples to determine the ability to identify changes in the microbiome (bacteria, fungi, and viruses that live in the gut and urine) of patients with prostate cancer during androgen deprivation therapy and radiation therapy. Radiation therapy has the potential to harm the genitourinary area or the bowel, causing a feeling of urgency or increased inflammation in the area. The radiation therapy is designed to not irradiate the bowel and bladder areas, but there is still some radiation exposure. The gut microbiome has been associated with differences in inflammation as well as producing molecules that influence healing. The purpose of this study is to see whether the microbiome may contribute to the healing of the organs exposed to radiation. Information learned from this study may help researchers discover a new risk factor that could be manipulated to improve the quality of life in patients with prostate cancer.
This randomized pilot phase II trial studies how well exercise intervention with or without internet-based cognitive behavior therapy works in reducing fatigue in participants with prostate cancer that has spread to other places in the body and usually cannot be cured or controlled with treatment. Exercise intervention and internet-based cognitive behavior therapy may help to improve feelings of tiredness in participants with prostate cancer. The study originally included both prostate cancer and breast cancer participants, but due to low accrual of breast cancer participants, the breast cancer cohort was closed and the study continued with prostate cancer participants only.
This clinical trial studies how well 68Ga-PSMA-11 positron emission tomography (PET)/computed tomography (CT) works in imaging patients with intermediate or high risk prostate cancer before surgery. Diagnostic procedures, such as PET/CT scans, may help find and diagnose prostate cancer and find out how far the disease has spread.
This phase II trial studies how well apalutamide, abiraterone acetate, prednisone, degarelix, and indomethacin work in treating patients with prostate cancer that has spread from where it started to nearby tissue or lymph nodes before surgery. Androgen can cause the growth of tumor cells. Hormone therapy using apalutamide, abiraterone acetate, prednisone, degarelix, and indomethacin may fight prostate cancer by lowering the amount of androgen the body makes and/or blocking the use of androgen by the tumor cells.
This phase I trial studies the side effects and best dose of romidepsin in treating patients with lymphoma, chronic lymphocytic leukemia, or solid tumors with liver dysfunction. Romidepsin may stop the growth of cancer cells by entering the cancer cells and by blocking the activity of proteins that are important for the cancer's growth and survival.
This phase I trial studies the side effects and the best dose of Akt inhibitor MK2206 together with hydroxychloroquine in treating patients with advanced solid tumors, melanoma, prostate or kidney cancer. Akt inhibitor MK2206 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as hydroxychloroquine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving Akt inhibitor MK2206 together with hydroxychloroquine may kill more tumor cells than giving either drug alone.
This phase II trial studies how well giving bicalutamide with or without Akt inhibitor MK2206 works in treating patients with previously treated prostate cancer. Androgens can cause the growth of prostate cancer cells. Antihormone therapy, such as bicalutamide, may lessen the amount of androgens made by the body. Akt inhibitor MK2206 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not yet known whether bicalutamide is more effective with or without Akt inhibitor MK2206 in treating prostate cancer.
This phase I trial studies stereotactic body radiation therapy (SBRT) in treating patients with prostate cancer that is likely to come back or spread (high-risk) undergoing surgery. Stereotactic body radiation therapy uses special equipment to position a patient and deliver radiation to tumors with high precision. This method can kill tumor cells with fewer doses over a shorter period and cause less damage to normal tissue. Delivering radiotherapy before prostatectomy by SBRT is more convenient, conformal, and may spare normal tissues better than delivering radiotherapy after prostatectomy.
This study tests four different methods of educating patients about follow-up care (NCI facing forward, brochure, EXCELS website alone, EXCELS health coaching alone and EXCELS website \& health coaching combination) after cancer treatment ends. While it is known that patients need information to guide follow-up it remains unknown how to best provide this in primary care.
This phase II trial studies how well stereotactic body radiation therapy works in treating patients with prostate cancer that has not spread to other parts of the body and have undergone surgery. Stereotactic body radiation therapy is a specialized radiation therapy that sends x-rays directly to the tumor using smaller doses over several days and may cause less damage to normal tissue.
This phase II trial studies how well radiation therapy with or without apalutamide works in treating patients with prostate cancer that has come back (recurrent). Radiation therapy uses high energy x-ray to kill tumor cells and shrink tumors. Androgen can cause the growth of prostate cancer cells. Drugs, such as apalutamide, may lessen the amount of androgen made by the body. Giving radiation therapy and apalutamide may work better at treating prostate cancer compared to radiation therapy alone.
This randomized phase II/III trial studies docetaxel, antiandrogen therapy, and radiation therapy to see how well it works compared with antiandrogen therapy and radiation therapy alone in treating patients with prostate cancer that has been removed by surgery. Androgen can cause the growth of prostate cells. Antihormone therapy may lessen the amount of androgen made by the body. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as docetaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving antiandrogen therapy and radiation therapy with or without docetaxel after surgery may kill any remaining tumor cells.
This phase II trial studies genetic and molecular mechanisms in assessing response in patients with prostate cancer receiving enzalutamide therapy. Androgens can cause the growth of prostate cancer cells. Antihormone therapy, such as enzalutamide, may lessen the amount of androgens made by the body. Studying samples of tissue and blood in the laboratory from patients with prostate cancer may help doctors better understand castration-resistant prostate cancer. It may also help doctors make improvements in prostate cancer treatment.
This phase II trial studies how well itraconazole works in treating patients with biochemically relapsed prostate cancer. Itraconazole may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This randomized phase IIA trial studies how well antiandrogen therapy works with or without axitinib before surgery in treating patients with previously untreated prostate cancer that is known or suspected to have spread to lymph nodes. Androgens can cause the growth of prostate cancer cells. Antihormone therapy, such as antiandrogen therapy may lessen the amount of androgen made by the body. Axitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not yet known if antiandrogen therapy is more effective with or without axitinib before surgery in treating patients with prostate cancer.