Treatment Trials

26 Clinical Trials for Various Conditions

Focus your search

COMPLETED
Electronic Monitoring Device of Patient-Reported Outcomes and Function in Improving Patient-Centered Care in Patients With Gastrointestinal Cancer Undergoing Surgery
Description

This pilot clinical trial studies an electronic monitoring device of patient-reported outcomes (PROs) and function in improving patient-centered care in patients with gastrointestinal cancer undergoing surgery. Electronic monitoring is a technology-based way of asking patients about the quality of life, symptoms, and activity using online surveys and an activity tracking watch may make it easier for patients to tell their doctors and nurses about any issues before and after surgery. Electronic systems of assessing PROs may increase the depth and accuracy of available clinical data, save administrative time, prompt early intervention that improves the patient experience, foster patient-provider communication, improve patient safety, and enhance the consistency of data collection across multiple sites.

TERMINATED
Veliparib, Cisplatin, and Gemcitabine Hydrochloride in Treating Patients With Advanced Biliary, Pancreatic, Urothelial, or Non-Small Cell Lung Cancer
Description

This phase I clinical trial is studying the side effects and best dose of veliparib and gemcitabine hydrochloride when given with cisplatin in treating patients with advanced biliary, pancreatic, urothelial, or non-small cell lung cancer. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cisplatin and gemcitabine hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells. Veliparib may help cisplatin and gemcitabine hydrochloride work better by making tumor cells more sensitive to the drugs.

TERMINATED
EF5 and Motexafin Lutetium in Detecting Tumor Cells in Patients With Abdominal or Non-Small Cell Lung Cancer
Description

This clinical trial is studying the amount of EF5 and motexafin lutetium present in tumor cells and/or normal tissues of patients with abdominal (such as ovarian, colon, or stomach cancer) or non-small cell lung cancer. EF5 may be effective in measuring oxygen in tumor tissue. Photosensitizing drugs such as motexafin lutetium are absorbed by tumor cells and, when exposed to light, become active and kill the tumor cells. Knowing the level of oxygen in tumor tissue and the level of motexafin lutetium absorbed by tumors and normal tissue may help predict the effectiveness of anticancer therapy

Conditions
Advanced Adult Primary Liver CancerCarcinoma of the AppendixFallopian Tube CancerGastrointestinal Stromal TumorLocalized Extrahepatic Bile Duct CancerLocalized Gallbladder CancerLocalized Gastrointestinal Carcinoid TumorLocalized Resectable Adult Primary Liver CancerLocalized Unresectable Adult Primary Liver CancerMetastatic Gastrointestinal Carcinoid TumorOvarian SarcomaOvarian Stromal CancerPrimary Peritoneal Cavity CancerRecurrent Adult Primary Liver CancerRecurrent Adult Soft Tissue SarcomaRecurrent Colon CancerRecurrent Extrahepatic Bile Duct CancerRecurrent Gallbladder CancerRecurrent Gastric CancerRecurrent Gastrointestinal Carcinoid TumorRecurrent Non-small Cell Lung CancerRecurrent Ovarian Epithelial CancerRecurrent Ovarian Germ Cell TumorRecurrent Pancreatic CancerRecurrent Rectal CancerRecurrent Small Intestine CancerRecurrent Uterine SarcomaRegional Gastrointestinal Carcinoid TumorSmall Intestine AdenocarcinomaSmall Intestine LeiomyosarcomaSmall Intestine LymphomaStage 0 Non-small Cell Lung CancerStage I Adult Soft Tissue SarcomaStage I Colon CancerStage I Gastric CancerStage I Non-small Cell Lung CancerStage I Ovarian Epithelial CancerStage I Ovarian Germ Cell TumorStage I Pancreatic CancerStage I Rectal CancerStage I Uterine SarcomaStage II Adult Soft Tissue SarcomaStage II Colon CancerStage II Gastric CancerStage II Non-small Cell Lung CancerStage II Ovarian Epithelial CancerStage II Ovarian Germ Cell TumorStage II Pancreatic CancerStage II Rectal CancerStage II Uterine SarcomaStage III Adult Soft Tissue SarcomaStage III Colon CancerStage III Gastric CancerStage III Ovarian Epithelial CancerStage III Ovarian Germ Cell TumorStage III Pancreatic CancerStage III Rectal CancerStage III Uterine SarcomaStage IIIA Non-small Cell Lung CancerStage IIIB Non-small Cell Lung CancerStage IV Adult Soft Tissue SarcomaStage IV Colon CancerStage IV Gastric CancerStage IV Non-small Cell Lung CancerStage IV Ovarian Epithelial CancerStage IV Ovarian Germ Cell TumorStage IV Pancreatic CancerStage IV Rectal CancerStage IV Uterine SarcomaUnresectable Extrahepatic Bile Duct CancerUnresectable Gallbladder Cancer
COMPLETED
Genotype-guided Dosing of mFOLFIRINOX Chemotherapy in Patients With Previously Untreated Advanced Gastrointestinal Malignancies
Description

This study is being done to determine the dose of a chemotherapy drug (irinotecan \[irinotecan hydrochloride\]) that can be tolerated as part of a combination of drugs. There is a combination of chemotherapy drugs often used to treat gastrointestinal cancer, which consists of 5-FU (fluorouracil), leucovorin (leucovorin calcium), irinotecan and oxaliplatin and is known as "FOLFIRINOX". FOLFIRINOX is a current drug therapy combination (or regimen) used for people with advanced pancreatic cancer, although this combination is not Food and Drug Administration (FDA) approved for this indication. FOLFIRINOX was recently shown in a separate clinical trial to increase survival compared to another commonly used drug in pancreatic cancer called gemcitabine. FOLFIRINOX is also a reasonable regimen for those with other advanced cancers of the gastrointestinal tract, including colon cancer, rectal cancer, esophagus cancer, stomach cancer, gall bladder cancer, bile duct cancer, ampullary cancer, and cancers with an unknown primary location. The best dose of irinotecan to use in FOLFIRINOX is not known. This study will analyze one gene (uridine 5'-diphospho \[UDP\] glucuronosyltransferase 1 family, polypeptide A1 \[UGT1A1\] gene) of subjects for the presence of an alteration in that gene, which may affect how the body handles irinotecan. Genes help determine some of the investigators individual characteristics, such as eye color, height and skin tone. Genes may also determine why people get certain diseases and how medicines may affect them. The result of the genetic analysis will divide subjects into one of three groups: A, B, or C. Group A (approximately 45% of subjects) will receive the standard dose of irinotecan. Group B (approximately 45% of subjects) will receive a lower dose of irinotecan. Group C (approximately 10% of subjects) will receive an even lower dose of irinotecan

COMPLETED
Vaccine Therapy With or Without Sargramostim in Treating Patients With Advanced or Metastatic Cancer
Description

Phase I trial to study the effectiveness of vaccine therapy with or without sargramostim in treating patients who have advanced or metastatic cancer. Vaccines may make the body build an immune response to kill tumor cells. Colony-stimulating factors such as sargramostim may increase the number of immune cells found in bone marrow or peripheral blood. Combining vaccine therapy with sargramostim may make tumor cells more sensitive to the vaccine and may kill more tumor cells

TERMINATED
Cyclophosphamide and Cryoablation in Treating Patients With Advanced or Metastatic Epithelial Cancer
Description

RATIONALE: Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Cryoablation kills cancer cells by freezing them. Giving chemotherapy together with cryoablation may kill more cancer cells. PURPOSE: This clinical trial is studying how well giving cyclophosphamide together with cryoablation works in treating patients with advanced or metastatic epithelial cancer.

Conditions
COMPLETED
Tumor Necrosis Factor in Patients Undergoing Surgery for Primary Cancer or Metastatic Cancer
Description

RATIONALE: Biological therapies, such as tumor necrosis factor, may stimulate the immune system in different ways and stop tumor cells from growing. Studying tumor necrosis factor in samples of tumor tissue and healthy tissue from patients with cancer in the laboratory may help doctors learn how tumor necrosis factor works in tumor tissue and healthy tissue. PURPOSE: This clinical trial is studying tumor necrosis factor in patients undergoing surgery for primary cancer or metastatic cancer .

COMPLETED
Massage Therapy in Treating the Symptoms of Patients With Locally Advanced or Metastatic Cancer
Description

RATIONALE: Massage therapy may help relieve symptoms associated with cancer. It is not yet known which type of massage therapy is more effective in treating the symptoms of patients with cancer. PURPOSE: This randomized clinical trial is studying different types of massage therapy to compare how well they work in treating the symptoms of patients with locally advanced or metastatic cancer.

Conditions
COMPLETED
Vaccine Therapy in Treating Patients With Advanced or Metastatic Cancer
Description

RATIONALE: Vaccines made from a person's white blood cells that have been treated in the laboratory may make the body build an immune response to kill tumor cells. PURPOSE: Phase I trial to study the effectiveness of vaccine therapy in treating patients who have advanced or metastatic cancer.

COMPLETED
Capecitabine Combined With Cisplatin in Treating Patients With Locally Advanced or Metastatic Solid Tumors
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one chemotherapy drug may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of capecitabine combined with cisplatin in treating patients who have locally advanced or metastatic solid tumors .

Conditions
COMPLETED
Trastuzumab Plus R115777 in Treating Patients With Advanced or Metastatic Cancer
Description

Phase I trial to study the effectiveness of trastuzumab plus R115777 in treating patients who have advanced or metastatic cancer. Monoclonal antibodies such as trastuzumab can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining trastuzumab with R115777 may kill more tumor cells.

Conditions
COMPLETED
Irinotecan and Capecitabine in Treating Patients With Solid Tumors
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of irinotecan and capecitabine in treating patients who have solid tumors that have not responded to previous treatment.

Conditions
COMPLETED
High-Dose Combination Chemotherapy Plus Peripheral Stem Cell Transplantation in Treating Patients With Advanced Cancer
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Peripheral stem cell transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of combination chemotherapy plus peripheral stem cell transplantation in treating patients who have advanced cancer.

Conditions
COMPLETED
An Investigational Scan (Magnetic Resonance Elastography) in Detecting Treatment Response in Patients With Advanced Liver Cancer
Description

This trial studies how well an investigational scan (magnetic resonance elastography \[MRE\]) works with standard imaging (magnetic resonance imaging \[MRI\]) in detecting response to treatment in patients with liver cancer that has spread to other places in the body. Diagnostic procedures, such as MRE with MRI, may make it easier for researchers to see if the treatment for liver cancer is working.

ACTIVE_NOT_RECRUITING
Sorafenib Tosylate and Pembrolizumab in Treating Patients With Advanced or Metastatic Liver Cancer
Description

This phase Ib/II trial studies how well sorafenib tosylate and pembrolizumab work in treating patients with liver cancer that has spread to other parts of the body. Sorafenib tosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as pembrolizumab, may interfere with the ability of tumor cells to grow and spread. Giving sorafenib tosylate and pembrolizumab may work better in treating patients with liver cancer.

COMPLETED
Sorafenib Tosylate in Treating Patients With Liver Cancer That Cannot Be Removed by Surgery
Description

This clinical trial studies sorafenib tosylate in treating patients with liver cancer that cannot be removed by surgery. Sorafenib tosylate may block some of the enzymes needed for tumor cell growth. Blocking these enzymes may also help the immune system work better. Granzyme B is a biomarker that can be used to measure how well the immune system is working. A biomarker is a biological molecule found in blood, other body fluids, or tissues that is a sign of a normal or abnormal process, or of a condition or disease. Studying granzyme B levels in patients receiving sorafenib tosylate may help doctors learn more about the effects of sorafenib tosylate on the immune system and may help to predict how well sorafenib tosylate will work in treating patients with liver cancer.

COMPLETED
Trametinib or Combination Chemotherapy in Treating Patients With Refractory or Advanced Biliary or Gallbladder Cancer or That Cannot Be Removed by Surgery
Description

This randomized phase II trial studies how well trametinib or combination chemotherapy works in treating patients with refractory or advanced biliary or gallbladder cancer or that cannot be removed by surgery. Trametinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as fluorouracil, leucovorin calcium, and capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether giving trametinib is more effective than combination chemotherapy in treating patients with biliary or gallbladder cancer.

COMPLETED
Sorafenib Tosylate and Yttrium Y 90 Glass Microspheres in Treating Patients With Liver Cancer That Cannot Be Removed by Surgery
Description

This phase II trial studies how well sorafenib tosylate and yttrium Y 90 glass microspheres work in treating patients with liver cancer that cannot be removed by surgery. Sorafenib tosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Yttrium Y 90 glass microspheres use glass beads to carry radiation directly to tumor cells without harming normal cells. Giving sorafenib tosylate with yttrium Y 90 glass microspheres may be an effective treatment for liver cancer.

COMPLETED
Sorafenib Tosylate With or Without Doxorubicin Hydrochloride in Treating Patients With Locally Advanced or Metastatic Liver Cancer
Description

This randomized phase III trial studies sorafenib tosylate and doxorubicin hydrochloride to see how well they work compared with sorafenib tosylate alone in treating patients with liver cancer that has spread to nearby tissue or lymph nodes or has spread to other places in the body. Sorafenib tosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. Drugs used in chemotherapy, such as doxorubicin hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. It is not yet known whether giving sorafenib tosylate together with doxorubicin hydrochloride is more effective than sorafenib tosylate alone in treating liver cancer.

COMPLETED
Temsirolimus and Bevacizumab in Treating Patients With Advanced Endometrial, Ovarian, Liver, Carcinoid, or Islet Cell Cancer
Description

This phase II trial studies how well temsirolimus and bevacizumab work in treating patients with advanced endometrial, ovarian, liver, carcinoid, or islet cell cancer. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Bevacizumab may also stop the growth of cancer by blocking blood flow to the tumor. Giving temsirolimus together with bevacizumab may kill more tumor cells.

COMPLETED
Dasatinib in Treating Patients With Solid Tumors or Lymphomas That Are Metastatic or Cannot Be Removed By Surgery
Description

This phase I trial studies the side effects and best dose of dasatinib in treating patients with solid tumors or lymphomas that are metastatic or cannot be removed by surgery. Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

Conditions
Adult Acute Lymphoblastic Leukemia in RemissionAdult B Acute Lymphoblastic LeukemiaAdult Hepatocellular CarcinomaAdult Nasal Type Extranodal NK/T-Cell LymphomaAdult Solid NeoplasmAdult T Acute Lymphoblastic LeukemiaAdvanced Adult Hepatocellular CarcinomaAnaplastic Large Cell LymphomaAngioimmunoblastic T-Cell LymphomaChronic Lymphocytic LeukemiaCutaneous B-Cell Non-Hodgkin LymphomaExtranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid TissueHepatosplenic T-Cell LymphomaIntraocular LymphomaLocalized Non-Resectable Adult Liver CarcinomaLocalized Resectable Adult Liver CarcinomaLymphomatous Involvement of Non-Cutaneous Extranodal SiteMature T-Cell and NK-Cell Non-Hodgkin LymphomaNodal Marginal Zone LymphomaProgressive Hairy Cell Leukemia Initial TreatmentRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic LymphomaRecurrent Adult Liver CarcinomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-Cell Leukemia/LymphomaRecurrent Cutaneous T-Cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides and Sezary SyndromeRecurrent Small Lymphocytic LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Hairy Cell LeukemiaSmall Intestinal LymphomaSplenic Marginal Zone LymphomaStage II Small Lymphocytic LymphomaStage III Adult Burkitt LymphomaStage III Adult Diffuse Large Cell LymphomaStage III Adult Diffuse Mixed Cell LymphomaStage III Adult Diffuse Small Cleaved Cell LymphomaStage III Adult Hodgkin LymphomaStage III Adult Immunoblastic LymphomaStage III Adult Lymphoblastic LymphomaStage III Adult T-Cell Leukemia/LymphomaStage III Chronic Lymphocytic LeukemiaStage III Cutaneous T-Cell Non-Hodgkin LymphomaStage III Grade 1 Follicular LymphomaStage III Grade 2 Follicular LymphomaStage III Grade 3 Follicular LymphomaStage III Mantle Cell LymphomaStage III Marginal Zone LymphomaStage III Small Lymphocytic LymphomaStage IIIA Mycosis Fungoides and Sezary SyndromeStage IIIB Mycosis Fungoides and Sezary SyndromeStage IV Adult Burkitt LymphomaStage IV Adult Diffuse Large Cell LymphomaStage IV Adult Diffuse Mixed Cell LymphomaStage IV Adult Diffuse Small Cleaved Cell LymphomaStage IV Adult Hodgkin LymphomaStage IV Adult Immunoblastic LymphomaStage IV Adult Lymphoblastic LymphomaStage IV Adult T-Cell Leukemia/LymphomaStage IV Chronic Lymphocytic LeukemiaStage IV Cutaneous T-Cell Non-Hodgkin LymphomaStage IV Grade 1 Follicular LymphomaStage IV Grade 2 Follicular LymphomaStage IV Grade 3 Follicular LymphomaStage IV Mantle Cell LymphomaStage IV Marginal Zone LymphomaStage IV Small Lymphocytic LymphomaStage IVA Mycosis Fungoides and Sezary SyndromeStage IVB Mycosis Fungoides and Sezary SyndromeT-Cell Large Granular Lymphocyte LeukemiaTesticular LymphomaUntreated Adult Acute Lymphoblastic LeukemiaUntreated Hairy Cell LeukemiaWaldenstrom Macroglobulinemia
COMPLETED
Interleukin-12 and Trastuzumab in Treating Patients With Cancer That Has High Levels of HER2/Neu
Description

Interleukin-12 may kill tumor cells by stopping blood flow to the tumor and by stimulating a person's white blood cells to kill cancer cells. Monoclonal antibodies such as trastuzumab can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. Phase I trial to study the effectiveness of interleukin-12 and trastuzumab in treating patients who have cancer that has high levels of HER2/neu and has not responded to previous therapy

Conditions
Advanced Adult Primary Liver CancerAnaplastic Thyroid CancerBone MetastasesCarcinoma of the AppendixDistal Urethral CancerFallopian Tube CancerGastrinomaGlucagonomaInflammatory Breast CancerInsulinomaLiver MetastasesLocalized Unresectable Adult Primary Liver CancerLung MetastasesMale Breast CancerMalignant Pericardial EffusionMalignant Pleural EffusionMetastatic Gastrointestinal Carcinoid TumorMetastatic Parathyroid CancerMetastatic Transitional Cell Cancer of the Renal Pelvis and UreterNewly Diagnosed Carcinoma of Unknown PrimaryOccult Non-small Cell Lung CancerPancreatic Polypeptide TumorPrimary Peritoneal Cavity CancerProximal Urethral CancerPulmonary Carcinoid TumorRecurrent Adenoid Cystic Carcinoma of the Oral CavityRecurrent Adrenocortical CarcinomaRecurrent Adult Primary Liver CancerRecurrent Anal CancerRecurrent Bladder CancerRecurrent Breast CancerRecurrent Carcinoma of Unknown PrimaryRecurrent Cervical CancerRecurrent Colon CancerRecurrent Endometrial CarcinomaRecurrent Esophageal CancerRecurrent Extrahepatic Bile Duct CancerRecurrent Gallbladder CancerRecurrent Gastric CancerRecurrent Gastrointestinal Carcinoid TumorRecurrent Islet Cell CarcinomaRecurrent Malignant Testicular Germ Cell TumorRecurrent Mucoepidermoid Carcinoma of the Oral CavityRecurrent Non-small Cell Lung CancerRecurrent Ovarian Epithelial CancerRecurrent Pancreatic CancerRecurrent Parathyroid CancerRecurrent Prostate CancerRecurrent Rectal CancerRecurrent Renal Cell CancerRecurrent Salivary Gland CancerRecurrent Small Intestine CancerRecurrent Squamous Cell Carcinoma of the LarynxRecurrent Squamous Cell Carcinoma of the Lip and Oral CavityRecurrent Squamous Cell Carcinoma of the NasopharynxRecurrent Squamous Cell Carcinoma of the OropharynxRecurrent Thyroid CancerRecurrent Transitional Cell Cancer of the Renal Pelvis and UreterRecurrent Urethral CancerRecurrent Vaginal CancerRecurrent Vulvar CancerSkin MetastasesSmall Intestine AdenocarcinomaSomatostatinomaStage III Adenoid Cystic Carcinoma of the Oral CavityStage III Adrenocortical CarcinomaStage III Bladder CancerStage III Cervical CancerStage III Colon CancerStage III Endometrial CarcinomaStage III Esophageal CancerStage III Follicular Thyroid CancerStage III Gastric CancerStage III Malignant Testicular Germ Cell TumorStage III Mucoepidermoid Carcinoma of the Oral CavityStage III Ovarian Epithelial CancerStage III Pancreatic CancerStage III Papillary Thyroid CancerStage III Prostate CancerStage III Rectal CancerStage III Renal Cell CancerStage III Salivary Gland CancerStage III Squamous Cell Carcinoma of the LarynxStage III Squamous Cell Carcinoma of the Lip and Oral CavityStage III Squamous Cell Carcinoma of the NasopharynxStage III Squamous Cell Carcinoma of the OropharynxStage III Vaginal CancerStage III Vulvar CancerStage IIIA Anal CancerStage IIIA Breast CancerStage IIIA Non-small Cell Lung CancerStage IIIB Anal CancerStage IIIB Breast CancerStage IIIB Non-small Cell Lung CancerStage IV Adenoid Cystic Carcinoma of the Oral CavityStage IV Adrenocortical CarcinomaStage IV Anal CancerStage IV Bladder CancerStage IV Breast CancerStage IV Colon CancerStage IV Endometrial CarcinomaStage IV Esophageal CancerStage IV Follicular Thyroid CancerStage IV Gastric CancerStage IV Mucoepidermoid Carcinoma of the Oral CavityStage IV Non-small Cell Lung CancerStage IV Ovarian Epithelial CancerStage IV Pancreatic CancerStage IV Papillary Thyroid CancerStage IV Prostate CancerStage IV Rectal CancerStage IV Renal Cell CancerStage IV Salivary Gland CancerStage IV Squamous Cell Carcinoma of the LarynxStage IV Squamous Cell Carcinoma of the Lip and Oral CavityStage IV Squamous Cell Carcinoma of the NasopharynxStage IV Squamous Cell Carcinoma of the OropharynxStage IVA Cervical CancerStage IVA Vaginal CancerStage IVB Cervical CancerStage IVB Vaginal CancerStage IVB Vulvar CancerThyroid Gland Medullary CarcinomaUnresectable Extrahepatic Bile Duct CancerUnresectable Gallbladder CancerUrethral Cancer Associated With Invasive Bladder CancerWDHA Syndrome
COMPLETED
Romidepsin in Treating Patients With Lymphoma, Chronic Lymphocytic Leukemia, or Solid Tumors With Liver Dysfunction
Description

This phase I trial studies the side effects and best dose of romidepsin in treating patients with lymphoma, chronic lymphocytic leukemia, or solid tumors with liver dysfunction. Romidepsin may stop the growth of cancer cells by entering the cancer cells and by blocking the activity of proteins that are important for the cancer's growth and survival.

Conditions
GliomaHematopoietic and Lymphoid Cell NeoplasmLymphomaMetastatic Malignant Solid NeoplasmNeuroendocrine NeoplasmRecurrent Adult Soft Tissue SarcomaRecurrent Bladder CarcinomaRecurrent Breast CarcinomaRecurrent Chronic Lymphocytic LeukemiaRecurrent Colorectal CarcinomaRecurrent Head and Neck CarcinomaRecurrent Lung CarcinomaRecurrent Malignant Solid NeoplasmRecurrent MelanomaRecurrent Pancreatic CarcinomaRecurrent Primary Cutaneous T-Cell Non-Hodgkin LymphomaRecurrent Prostate CarcinomaRecurrent Renal Cell CarcinomaRecurrent Thyroid Gland CarcinomaRefractory Chronic Lymphocytic LeukemiaRefractory Mature T-Cell and NK-Cell Non-Hodgkin LymphomaRefractory Primary Cutaneous T-Cell Non-Hodgkin LymphomaStage III Breast Cancer AJCC v7Stage III Colorectal Cancer AJCC v7Stage III Cutaneous Melanoma AJCC v7Stage III Lung Cancer AJCC v7Stage III Pancreatic Cancer AJCC v6 and v7Stage III Prostate Cancer AJCC v7Stage III Renal Cell Cancer AJCC v7Stage III Soft Tissue Sarcoma AJCC v7Stage IIIA Breast Cancer AJCC v7Stage IIIA Colorectal Cancer AJCC v7Stage IIIA Cutaneous Melanoma AJCC v7Stage IIIB Breast Cancer AJCC v7Stage IIIB Colorectal Cancer AJCC v7Stage IIIB Cutaneous Melanoma AJCC v7Stage IIIC Breast Cancer AJCC v7Stage IIIC Colorectal Cancer AJCC v7Stage IIIC Cutaneous Melanoma AJCC v7Stage IV Breast Cancer AJCC v6 and v7Stage IV Colorectal Cancer AJCC v7Stage IV Cutaneous Melanoma AJCC v6 and v7Stage IV Lung Cancer AJCC v7Stage IV Pancreatic Cancer AJCC v6 and v7Stage IV Prostate Cancer AJCC v7Stage IV Renal Cell Cancer AJCC v7Stage IV Soft Tissue Sarcoma AJCC v7Stage IVA Colorectal Cancer AJCC v7Stage IVB Colorectal Cancer AJCC v7Unresectable Solid Neoplasm
COMPLETED
Docetaxel in Treating Patients With Solid Tumors and Abnormal Liver Function
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase I trial to study the effectiveness of docetaxel in treating patients with advanced solid tumors that have not responded to standard therapy or for which there is no effective therapy.

COMPLETED
Vinorelbine in Treating Patients With Advanced Solid Tumors That Have Not Responded to Treatment and Liver Dysfunction
Description

RATIONALE: Drugs used in chemotherapy, such as vinorelbine, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. PURPOSE: This pilot trial is studying the side effects and best dose of vinorelbine in treating patients with advanced solid tumors that have not responded to treatment and liver dysfunction.

COMPLETED
MS-275 in Treating Patients With Advanced Solid Tumors or Lymphoma
Description

RATIONALE: MS-275 may stop the growth of cancer cells by blocking the enzymes necessary for their growth. PURPOSE: This phase I trial is studying the side effects and best dose of MS-275 in treating patients with advanced solid tumors or lymphoma.

Conditions