7 Clinical Trials for Various Conditions
This phase Ib trial evaluates the best dose, potential benefits, and/or side effects of erdafitinib in combination with enfortumab vedotin in treating patients with bladder cancer that has spread from where it first started (primary site) to other places in the body (metastatic) and possesses genetic alterations in FGFR2/3 genes. Erdafitinib is in a class of medications called kinase inhibitors. It works by blocking the action of an abnormal FGFR protein that signals cancer cells to multiply. This may help keep cancer cells from growing and may kill them. Enfortumab vedotin is a monoclonal antibody, enfortumab, linked to an anticancer drug called vedotin. It works by helping the immune system to slow or stop the growth of cancer cells. Enfortumab attaches to a protein called nectin-4 on cancer cells in a targeted way and delivers vedotin to kill them. It is a type of antibody-drug conjugate. Giving erdafitinib in combination with enfortumab vedotin may shrink or stabilize metastatic bladder cancer with alterations in FGFR 2/3 genes.
This phase II trial studies the effect of nivolumab in urothelial cancer that has spread to other places in the body (metastatic), specifically in patients with aberrations in ARID1A gene (ARID1A mutation) and correlate with expression level of CXCL13, an immune cytokine. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving nivolumab may help control the disease in patients with urothelial cancer or solid tumors. This trial aims at enriching patient selection based on genomic and immunological attributes of the tumor.
This phase II trial investigates the side effects of tocilizumab, ipilimumab, and nivolumab in treating patients with melanoma, non-small cell lung cancer, or urothelial carcinoma that has spread to nearby tissue or lymph nodes (locally advanced). Immunotherapy with monoclonal antibodies, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Tocilizumab is a monoclonal antibody that may interfere with the immune system to decrease immune-related toxicities. Giving tocilizumab, ipilimumab, and nivolumab may kill more tumor cells.
This phase Ib/II trial studies the side effects and best dose of plinabulin in combination with radiation therapy and immunotherapy in patients with select cancers that have spread to other places in the body (advanced) after progression on PD-1 or PD-L1 targeted antibodies. Plinabulin blocks tumor growth by targeting both new and existing blood vessels going to the tumor as well as killing tumor cells. Immunotherapy may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving plinabulin in combination with radiation therapy and immunotherapy may work better in treating advanced cancers.
This phase II trial studies the side effects of avelumab and how well it works in combination with fluorouracil and mitomycin or cisplatin and radiation therapy in treating participants with muscle-invasive bladder cancer. Monoclonal antibodies, such as avelumab, may interfere with the ability of cancer cells to grow and spread. Drugs used in chemotherapy, such as fluorouracil, mitomycin, and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy beams to kill tumor cells and shrink tumors. Giving avelumab with chemotherapy and radiotherapy may work better in treating participants with muscle-invasive bladder cancer.
This phase II trial studies the side effects of pembrolizumab and to see how well it works in treating patients with bladder cancer who are undergoing surgery to remove the bladder. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
This study examines at-home monitoring of patient-generated phsyiologic health data and patient-reported outcomes. Patient-generated health data using at-home monitoring devices and smart device applications are used more and more to measure value and quality in cancer care. This trial may show whether at-home monitoring programs can improve the care of patients after hospital discharge from surgery.