20 Clinical Trials for Various Conditions
This randomized pilot phase II trial studies how well molecular phenotyping works in predicting response in patients with stage IB-III esophageal cancer who are receiving carboplatin and paclitaxel or oxaliplatin, leucovorin calcium, and fluorouracil. Studying the genes in a patients tumor cells before and after chemotherapy may help in understanding if there are specific features of the tumor cells that make a person more or less likely to respond to treatment and how these features may be affected by treatment.
This pilot clinical trial studies genetic analysis-guided irontecan hydrochloride dosing of modified fluorouracil, irinotecan hydrochloride, leucovorin calcium, oxaliplatin (mFOLFIRINOX) in treating patients with gastroesophageal or stomach cancer that has spread from where it started to nearby tissue or lymph nodes. Drugs used in chemotherapy, such as fluorouracil, irinotecan hydrochloride, leucovorin calcium, and oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Leucovorin calcium may also help fluorouracil work better. Genetic analysis may help doctors determine what dose of irinotecan hydrochloride patients can tolerate.
This randomized phase II trial studies how well regorafenib works in treating patients with cancer of the esophagus or gastroesophageal junction that has spread from where it started to nearby tissue or lymph nodes and have completed chemoradiation therapy and surgery. Regorafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase II trial studies how well pralatrexate and oxaliplatin work in treating patients with esophageal, stomach, or gastroesophageal junction cancer that cannot be removed by surgery or has spread from the primary site (place where it started) to other places in the body. Pralatrexate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving pralatrexate with oxaliplatin may be an effective treatment for esophageal, stomach, or gastroesophageal junction cancer.
This phase II trial studies how well oxaliplatin, leucovorin calcium, and fluorouracil followed by surgery and response based concurrent chemotherapy and radiation therapy works in treating patients with cancer of the esophagus, gastroesophageal junction, or gastric cardia. Drugs used in chemotherapy, such as oxaliplatin, leucovorin calcium, fluorouracil, paclitaxel, and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high energy x rays to kill tumor cells. Giving chemotherapy followed by surgery and response based chemotherapy and radiation therapy may kill more tumor cells.
This study examines at-home monitoring of patient-generated phsyiologic health data and patient-reported outcomes. Patient-generated health data using at-home monitoring devices and smart device applications are used more and more to measure value and quality in cancer care. This trial may show whether at-home monitoring programs can improve the care of patients after hospital discharge from surgery.
This trial tests new methods and materials for the real-time chemotherapy-associated side effects monitoring support system (RT-CAMSS) in patients with gastrointestinal cancers undergoing chemotherapy. RT-CAMSS is a monitoring support system that provides patients with evidence-based information and side-effect management and coping skills, emotional support and validation, and proactive care via text messages and questionnaires as they undergo chemotherapy.
This trial studies cardiac changes after radiation or chemo-radiation for the treatment of lung or esophageal cancer that has not spread to other places in the body (non-metastatic) or has not come back (non-recurrent). Continuous cardiac monitoring with an implanted device may help to identify cardiac changes that would remain unnoticed, and facilitate the treatment of these early cardiac changes as part of standard care.
This phase I trial studies the side effects and best dose of ganetespib when given together with paclitaxel, carboplatin, and radiation therapy in treating patients with stage II-III esophageal cancer. Ganetespib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as paclitaxel and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high-energy x-rays to kill tumor cells and shrink tumors. Giving ganetespib in combination with paclitaxel, carboplatin, and radiation therapy may be a better treatment for patients with esophageal cancer.
This partially randomized phase I/II trial studies the side effects and best dose of c-Met inhibitor AMG 337 when given together with oxaliplatin, leucovorin calcium, and fluorouracil and to see how well they work in treating patients with stomach or esophageal cancer that has spread to other places in the body and usually cannot be cured or controlled with treatment. C-Met inhibitor AMG 337 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as, oxaliplatin, leucovorin calcium, and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving c-Met inhibitor AMG 337 with oxaliplatin, leucovorin calcium, and fluorouracil may kill more tumor cells.
This phase I trial studies the side effects and best dose of Akt inhibitor MK2206 and lapatinib ditosylate when given together with trastuzumab in treating patients with locally advanced or metastatic human epidermal growth factor receptor-2 (HER2)-positive breast, gastric, or gastroesophageal cancer that cannot be removed by surgery. Akt inhibitor MK2206 and lapatinib ditosylate may stop the growth of tumor cells by blocking some of the enzymes needed for tumor growth. Monoclonal antibodies, such as trastuzumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Giving Akt inhibitor MK2206 and lapatinib ditosylate together with trastuzumab may kill more tumor cells.
This pilot clinical trial studies cyclodextrin-based nanopharmaceutical CRLX101 in treating patients with advanced or metastatic stomach, gastroesophageal, or esophageal cancer that has progressed through at least one prior regimen of chemotherapy and cannot be removed by surgery. CRLX101 delivers the cytotoxic topoisomerase-1 inhibitor camptothecin into tumor cells and is hypothesized to interrupt the growth of tumor cells.
RATIONALE: Drugs used in chemotherapy, such as oxaliplatin, leucovorin calcium, fluorouracil, irinotecan hydrochloride, and docetaxel, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Combining more than one drug may kill more tumor cells. It is not yet known which regimen of combination chemotherapy is more effective in treating tumor cells. PURPOSE: This randomized phase II trial studies how well oxaliplatin, leucovorin calcium, and fluorouracil work compared to irinotecan hydrochloride and docetaxel in treating patients with esophageal cancer, gastric cancer, or gastroesophageal junction cancer.
RATIONALE: PET scans done during chemotherapy may help doctors assess a patient's response to treatment and help plan the best treatment. PURPOSE: This randomized phase II trial is studying PET scan imaging in assessing response in patients with esophageal cancer receiving combination chemotherapy.
This pilot phase II trial studies how well giving bevacizumab and combination chemotherapy together before surgery works in treating patients with locally advanced esophageal or stomach cancer. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Drugs used in chemotherapy, such as leucovorin calcium, fluorouracil, and oxaliplatin work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving bevacizumab and combination chemotherapy before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed. Giving these treatments after surgery may kill any tumor cells that remain after surgery.
This randomized phase II trial studies how well docetaxel, oxaliplatin, capecitabine, fluorouracil, and radiation therapy works compared with fluorouracil when given together with oxaliplatin and radiation therapy in treating patients with cancer of the esophagus or gastroesophageal junction that has spread from where it started to nearby tissue or lymph nodes. Drugs used in chemotherapy, such as docetaxel, oxaliplatin, capecitabine, and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving more than one drug (combination chemotherapy) together with radiation therapy before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed.
This phase IIA trial investigates the side effects of Ad5.F35-hGCC-PADRE vaccine and to see how well it works in treating patients with gastrointestinal adenocarcinoma. Ad5.F35-hGCC-PADRE vaccine may help to train the patient's own immune system to identify and kill tumor cells and prevent it from coming back.
This early phase I trial studies how well pembrolizumab works in treating patients with gastroesophageal adenocarcinoma that has spread to other places or cannot be removed by surgery. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
Drugs used in chemotherapy such as cisplatin and fluorouracil use different ways to stop tumor cells from dividing so they stop growing or die. Oblimersen may increase the effectiveness of chemotherapy by making tumor cells more sensitive to the drugs. This phase I/II trial is studying the side effects and best dose of oblimersen when given with cisplatin and fluorouracil and to see how well they work in treating patients with locally advanced, recurrent, or metastatic cancer of the esophagus, gastroesophageal junction, or stomach.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one chemotherapy drug may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of capecitabine combined with cisplatin in treating patients who have locally advanced or metastatic solid tumors .