281 Clinical Trials for Various Conditions
This randomized phase II trial studies how well giving rasburicase together with allopurinol works in treating patients with hematologic malignancies. Rasburicase may reduce the level of uric acid in the blood. Allopurinol may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. It is not yet known which dose of rasburicase is more effective in treating hematologic malignancies when given together with or without allopurinol.
This phase I clinical trial is studying the side effects and best dose of RO4929097 when given together with capecitabine in treating patients with refractory solid tumors. RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving RO4929097 together with chemotherapy may kill more tumor cells.
RATIONALE: AR-42 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I trial is studying the side effects and best dose of AR-42 in treating patients with advanced or relapsed multiple myeloma, chronic lymphocytic leukemia, or lymphoma.
RATIONALE: Giving chemotherapy and total-body irradiation (TBI) before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they will help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Giving colony-stimulating factors, such as filgrastim (G-CSF) and plerixafor, to the donor helps the stem cells move (mobilization) from the bone marrow to the blood so they can be collected and stored. PURPOSE: This clinical trial is studying giving plerixafor and filgrastim together for mobilization of donor peripheral blood stem cells before a peripheral blood stem cell transplant in treating patients with hematologic malignancies
RATIONALE: Lenalidomide may stop the growth of cancer by blocking blood flow to the tumor. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving lenalidomide together with rituximab may be an effective treatment for B-cell non-Hodgkin lymphoma. PURPOSE: This phase I/II trial is studying the side effects and best dose of lenalidomide when given together with rituximab as maintenance therapy in treating patients with B-cell non-Hodgkin lymphoma.
This phase I trial is studying the side effects and best dose of gossypol when given together with paclitaxel and carboplatin in treating patients with solid tumors that are metastatic or cannot be removed by surgery. Drugs used in chemotherapy, such as gossypol, paclitaxel, and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving gossypol together with paclitaxel and carboplatin may kill more tumor cells
Drugs used in chemotherapy, such as FAU, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. This phase I trial is studying the side effects and best dose of FAU in treating patients with advanced solid tumors or lymphoma.
This phase I trial studies the side effects and best dose of dasatinib in treating patients with solid tumors or lymphomas that are metastatic or cannot be removed by surgery. Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase I trial is studying the side effects and best dose of vorinostat in treating patients with metastatic or unresectable solid tumors or lymphoma and liver dysfunction. (closed for accrual as of 04/05/2010) Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Vorinostat may have different effects in patients who have changes in their liver function.
This phase I trial is studying the side effects and best dose of bevacizumab and cediranib maleate in treating patients with metastatic or unresectable solid tumor, lymphoma, intracranial glioblastoma, gliosarcoma or anaplastic astrocytoma. Monoclonal antibodies, such as bevacizumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Cediranib maleate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Bevacizumab and cediranib maleate may also stop the growth of cancer cells by blocking blood flow to the cancer. Giving bevacizumab together with cediranib maleate may kill more cancer cells.
This phase I trial is studying the side effects and best dose of giving PDX101 together with 17-AAG in treating patients with metastatic or unresectable solid tumors or lymphoma. PDX101 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Drugs used in chemotherapy, such as 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving PXD101 together with 17-AAG may kill more cancer cells.
This phase I trial is studying the side effects and best dose of PXD101 and bortezomib in treating patients with advanced solid tumors or lymphomas. PXD101 and bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PXD101 may also cause cancer cells to look more like normal cells, and to grow and spread more slowly. Giving PXD101 together with bortezomib may kill more cancer cells.
This phase I trial is studying the best dose of 3-AP and the side effects of giving 3-AP together with gemcitabine in treating patients with advanced solid tumors or lymphoma. Drugs used in chemotherapy, such as 3-AP and gemcitabine (GEM), work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. 3-AP may help gemcitabine kill more cancer cells by making the cells more sensitive to the drug. 3-AP may also stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase I/II trial is studying the side effects and best dose of fenretinide and to see how well it works when given together with rituximab in treating patients with B-cell non-Hodgkin lymphoma. Drugs used in chemotherapy, such as fenretinide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some find cancer cells and kill them or carry cancer-killing substances to them. Others interfere with the ability of cancer cells to grow and spread. Giving fenretinide together with rituximab may kill more cancer cells.
This phase I trial is studying the side effects and best dose of sorafenib in treating patients with metastatic or unresectable solid tumors, multiple myeloma, or non-Hodgkin's lymphoma with or without impaired liver or kidney function. Sorafenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Sorafenib may have different effects in patients who have changes in their liver or kidney function
This phase I trial is studying the side effects and best dose of SB-715992 in treating patients with metastatic or unresectable solid tumors or Hodgkin's or non-Hodgkin's lymphoma. Drugs used in chemotherapy, such as SB-715992, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing
Phase I trial to study the effectiveness of combining MS-275 with isotretinoin in treating patients who have metastatic or advanced solid tumors or lymphomas. MS-275 may stop the growth of cancer cells by blocking the enzymes necessary for their growth. Isotretinoin may help cancer cells develop into normal cells. MS-275 may increase the effectiveness of isotretinoin by making cancer cells more sensitive to the drug. MS-275 and isotretinoin may also stop the growth of solid tumors or lymphomas by stopping blood flow to the cancer. Combining MS-275 with isotretinoin may kill more cancer cells
This phase I trial is studying the side effects and best dose of giving tanespimycin together with bortezomib in treating patients with advanced solid tumors or lymphomas. (Accrual for lymphoma patients closed as of 11/27/09) Drugs used in chemotherapy, such as tanespimycin, work in different ways to stop cancer cells from dividing so they stop growing or die. Bortezomib may stop the growth of cancer cells by blocking the enzymes necessary for their growth. It may also increase the effectiveness of tanespimycin by making cancer cells more sensitive to the drug. Combining tanespimycin with bortezomib may kill more cancer cells.
This phase I trial is studying the side effects and best dose of 17-DMAG in treating patients with metastatic or unresectable solid tumors or lymphomas. Drugs used in chemotherapy, such as 17-DMAG, work in different ways to stop cancer cells from dividing so they stop growing or die
This phase I trial is studying the side effects and best dose of EMD 121974 in treating patients with solid tumors or lymphoma. Cilengitide (EMD 121974) may stop the growth of cancer cells by stopping blood flow to the cancer
Phase I/II trial to study the effectiveness of combining yttrium Y 90 ibritumomab tiuxetan with rituximab in treating patients who have localized or recurrent lymphoproliferative disorder after an organ transplant. Monoclonal antibodies such as yttrium Y 90 ibritumomab tiuxetan and rituximab can locate cancer cells and either kill them or deliver radioactive cancer-killing substances to them without harming normal cells
Drugs used in chemotherapy such as gemcitabine use different ways to stop cancer cells from dividing so they stop growing or die. Oblimersen may increase the effectiveness of gemcitabine by making cancer cells more sensitive to the drug. This phase I trial is studying the side effects and best dose of oblimersen and gemcitabine in treating patients with metastatic or unresectable solid tumors or lymphoma
Phase I trial to study the effectiveness of bortezomib in treating patients who have advanced cancer and kidney dysfunction. Bortezomib may stop the growth of cancer cells by blocking the enzymes necessary for cancer cell growth.
Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Phase I trial to study the effectiveness of imatinib mesylate in treating patients who have advanced cancer and liver dysfunction
Phase I trial to study the effectiveness of geldanamycin analogue in treating patients who have advanced solid tumors or non-Hodgkin's lymphoma. Drugs used in chemotherapy work in different ways to stop tumor cells from dividing so they stop growing or die.
Monoclonal antibodies such as rituximab can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Interleukin-2 may stimulate a person's white blood cells to kill cancer cells. Combining rituximab with interleukin-2 may kill more cancer cells. Phase I trial to study the effectiveness of rituximab plus interleukin-2 in treating patients who have hematologic cancer.
Drugs used in chemotherapy work in different ways to stop cancer cells from dividing so they stop growing or die. This phase I trial is studying the side effects and best dose of 17-N-allylamino-17-demethoxygeldanamycin in treating patients with advanced epithelial cancer, malignant lymphoma, or sarcoma
Phase I trial to study genetic testing and the effectiveness of irinotecan in treating patients who have solid tumors and lymphoma. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Genetic testing for a specific enzyme may help doctors determine whether side effects from or response to chemotherapy are related to a person's genetic makeup
RATIONALE: Studying samples of semen from cancer survivors in the laboratory may help doctors learn more about changes that occur in DNA and identify biomarkers related to cancer. PURPOSE: This phase I research study is looking at the presence of donor-derived DNA in semen samples form cancer survivors who underwent donor stem cell transplant.
RATIONALE: Studying samples of blood and tissue from patients with cancer in the laboratory may help doctors learn more about changes that occur in DNA and identify biomarkers related to cancer. PURPOSE: This research study is looking at blood and tissue samples from patients with aggressive non-Hodgkin B-cell lymphoma or Hodgkin lymphoma.